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Abstract

Integer Programs for High Dose Rate Brachytherapy Needle and Dose Planning that
Directly Optimize Clinical Objectives

by

Ko-Ay Timmy Siauw

Doctor of Philosophy in Engineering — Civil and Environmental Engineering

University of California, Berkeley

Professor Ken Y. Goldberg, Co-chair

Associate Professor Alexandre M. Bayen, Co-chair

High dose rate (HDR) brachytherapy is a radiation therapy for cancer in the prostate,
cervix, breast, head, and neck, including other sites. In HDR brachytherapy, hollow needles
are inserted or placed near the cancer site. Radiation is delivered to the patient by a
radioactive source which is sequentially threaded through the needles. The dose distribution
is controlled by altering the dwell times, the time spent at pre-defined positions on the
needles.

HDR brachytherapy has a 90% cancer-free survival rate at 12 years when used for the
treatment of prostate cancer, the focus of this dissertation. However, it can have serious
negative side effects such as impotence and incontinence, which are caused by excess radi-
ation exposure and needle puncture of healthy organs near the prostate, or organs at risk
(OAR). A major goal of the field is to reduce side effects of HDR brachytherapy without
compromising its therapeutic effectiveness. Towards this goal, this dissertation seeks to use
mathematical optimization techniques to compute radiation dose distributions which meet
clinical objectives and needle configurations which induce less trauma in the patient. We
develop planning tools that directly optimize the dose distributions towards the RTOG-
0321 standard dose objectives set by the Radiation Therapy Oncology Group and needle
configurations which avoid puncturing OAR and use fewer needles than common practice.
Specifically, this dissertation makes the following contributions.

Contributions:

1. We developed Inverse Planning by Integer Program (IPIP), the first integer program
which directly optimizes dosimetric indices, the standard metrics used to evaluate HDR
brachytherapy dose distributions. However, we showed that for anatomy data taken from
patients previously treated at the UCSF clinic and the RTOG-0321 dose objectives, CPLEX
could not solve IPIP within 30 minutes of computing time using its default parameters.
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2. We developed a heuristic algorithm, IPIP-H, which uses two linear programs to compute
feasible solutions for IPIP. Thus, it is a polynomial-time heuristic algorithm for IPIP. We
used IPIP-H to compute dose plans for the same patients as IPIP. We showed that IPIP-H
could compute a dose plan for each patient which met all the dose objectives specified by
the RTOG-0321 protocol in less than 30 seconds of computing time (avg. 13 seconds). The
solutions computed from IPIP-H were always feasible for IPIP and were within 5% of the
optimal solution. We compared IPIP-H to Inverse Planning Simulated Annealing (IPSA),
a dose planning model which is clinically deployed and has been used worldwide for over a
decade. IPSA was not able to compute a dose plan which met all the dose objectives for
any of the patients in our data set using its standard class solution. Therefore, IPSA would
require iterations of manual fine tuning of its optimization parameters until a feasible dose
plan was found. IPIP-H would not require iteration.

3. We formulated the problem of positioning HDR brachytherapy needles as a spatial cover-
age problem: given a large candidate set of needles for insertion, anatomy data, and a user
parameter, δ, find the smallest candidate needle subset such that the minimum distance
between any point in the prostate and a needle in the chosen set is less than δ. We showed
that this problem could be represented as a set cover integer program.

4. We developed Needle Planning by Integer Program (NPIP), an algorithm which generates
a set of candidate needles represented by skew-line segments, solves an integer program which
chooses a candidate needle subset that covers the prostate according to the user-parameter, δ,
and verifies that the final needle configuration meets dose objectives by computing a dose plan
for it using IPIP. NPIP uses a candidate needle set which is approximately 10 times larger
than considered with Hyrbid Inverse Planning Optimization (HIPO), the only other fully
computerized needle planning system for HDR brachytherapy known to us. By construction,
NPIP avoids choosing needles which penetrate OAR and needles which collide with each
other. We used NPIP to compute needle configurations for patients previously treated at
the UCSF clinic and compared the computed needle configurations to those implanted by the
physician. NPIP could find needle configurations which met the RTOG-0321 dose objectives
and used 10 or fewer needles; the physician used 16 needles. NPIP always computed a needle
configuration that avoided puncturing the penile bulb; the average number of punctures made
by the physician was 5. NPIP required an average of 5 minutes of computing time, but there
was a wide range of run times, up to almost one hour. We also conducted a sensitivity
analysis of NPIP-generated needle configurations to placement errors on the order expected
from current needle insertion robots, which was about 2 mm. We showed that, although
dose objectives could be met with 10 or fewer needles, 16 needles were required to meet dose
objectives robustly.

5. We designed and implemented the first end-to-end robotic HDR brachytherapy exper-
iment. Our experiment utilized Contributions 1 through 4, and Acubot-RND, a needle
insertion robot specialized for needle insertion. We planned and executed NPIP-generated
needle configurations in a fully equipped brachytherapy environment on two anatomically-
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correct gelatin phantoms. There were non-trivial placement errors between the planned
needle configuration and the implanted needle configuration. We separated the error into
systematic error and random error. We computed the systematic error as the rigid least
squares fit between points regularly sampled along the needles in the planned and actual
needle configuration. The total RMS error between the planned and actual needle configu-
ration was 3 mm for the first phantom and 5 mm for the second phantom. We computed the
random error as the total RMS error between the planned and actual needle configuration
after the systematic error was removed. The random error was 1.4 mm for the first phan-
tom and 2.5 mm for the second phantom. Our random errors were close to the placement
error of current needle insertion robots which have a more sophisticated calibration device.
Although there were discrepancies between the planned and actual needle configuration, we
showed that our end-to-end robotic experiment could execute the planned needle configura-
tions with sufficient accuracy to meet the RTOG-0321 dose objectives and avoid puncturing
OAR. We compared the needle configurations executed by our robotic workflow with a nee-
dle configuration executed by a world-class brachytherapist, who also used 16 needles, met
dose objectives and avoided puncturing OAR. Therefore, the needle configurations executed
in our experiment are comparable to an expert physician.

In summary, this dissertation has developed mathematical methods which improve the
planning of HDR brachytherapy dose distributions and needle configurations. Dose distri-
butions can be directly optimized towards the standard RTOG-0321 dosimetric protocol,
or other dose objectives based on constraining dosimetric indices, and needle configurations
can be computed which meet dose objectives, use fewer needles than standard practice, and
avoid puncturing OAR. We have demonstrated the feasibility of using IPIP and NPIP in a
clinical environment using a robotic clinical workflow. These planning methods are a signif-
icant step towards reducing side effect of brachytherapy. We leave a clinical translation of
these tools to determine if, and the extent, side effects are actually reduced.
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Chapter 1

Introduction

Radiation has been used to treat cancer for over 100 years [76] and is currently involved
in approximately two-thirds of all cancer treatment regimens [6]. There are two major
categories of radiation therapy: external beam therapy and brachytherapy. In external
beam therapy, radiation is delivered to the tumor from a source outside the body, and in
brachytherapy, the radiation source is delivered directly into the cancer site using temporarily
inserted needles (“brachys” is Greek for “proximal”). Although the focus of this dissertation
is on brachytherapy, external beam therapy and brachytherapy are often used in combination
to treat cancer [9, 26, 30, 45, 47, 92]. There are also two types of brachytherapy: low dose
rate (LDR) and high dose rate (HDR) brachytherapy. The two types of brachytherapy
differ in the strength of the radioactive source used, low and high respectively, and the
amount of time the radioactive source stays inside the body. In LDR brachytherapy, a set of
radioactive sources are placed at the tumor site using hollow needles. After the sources are
placed, the needles are removed, but the sources stay inside the body indefinitely. In HDR
brachytherapy, a configuration of needles is placed at the tumor site, and a single radioactive
source is sequentially threaded through the needles. Radiation, i.e. dose, is delivered to the
tumor by temporarily halting the source at pre-specified dwell positions along the needles.
After the procedure, the needles and the source are removed from the body.

Brachytherapy is used used to treat cancer in many areas of the body including the
prostate [42,72,73], cervix [39,81,87], vagina [71,107], breast [4,97,114,115], lungs [8,44,65],
and head and neck [43, 58, 98], and brachytherapy was performed on over 80,000 patients
in 2004 [6]. In particular, brachytherapy has been shown to be an effective treatment for
prostate cancer with a cancer-free survival rate over 90% at 12 years [113]. However HDR
brachythreapy can have serious negative side effects. Several studies confirm that prostate
brachytherapy can result in incontinence [29, 51] and impotence [34, 75]. These side-effects
are a result of excessive radiation to the penile bulb [29,34,75], number of needles used [112]
and needle penetration through sensitive structures near the penile bulb [78].

A major goal of prostate brachytherapy research is to reduce trauma and side effects
without reducing its therapeutic effectiveness. Over the last 20 years, there has been a
tremendous amount of effort in patient-specific dose planning [2, 18, 53, 62, 68, 104], needle
planning [52,96], and improving the needle insertion process using robots [19,24,28,89]. This
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dissertation contributes to this body of work by developing a dose planning algorithm for
directly optimizing dosimetric indices, which are the standard metrics used to define dose
objectives for HDR brachytherapy [46, 48]. As a test bench, we always optimize towards
the standard dose objectives, i.e. constraints on dosimetric indices, specified in the RTOG-
0321 dosimetric protocol. However, our algorithm can handle other dose objectives based on
constraining dosimetric indices. We also develop a needle planning algorithm for computing
needle configurations that meet dose objectives, use fewer needles than standard practice, and
avoid puncturing organs at risk. Finally, we demonstrate the use of these planning algorithms
in the first robotic, needle-insertion experiment for HDR brachytherapy. The contributions
of this dissertation towards reducing trauma and side effects of HDR brachytherapy are
detailed below.

Contributions:

1. We developed Inverse Planning by Integer Program (IPIP), the first integer program
which directly optimizes dosimetric indices. However, we showed that for anatomy data taken
from patients previously treated at the UCSF clinic and the RTOG-0321 dose objectives,
CPLEX [21], a general commercial linear and integer program solver, could not solve IPIP
within 30 minutes of computing time using its default parameters.

2. We developed a heuristic algorithm, IPIP-H, which uses two linear programs to com-
pute feasible solutions for IPIP. Thus, it is a polynomial-time heuristic algorithm for IPIP.
We used IPIP-H to compute dose plans for the same patients as IPIP. We showed that IPIP-
H could compute a dose plan for each patient which met all the dose objectives specified
by the RTOG-0321 protocol in less than 30 seconds of computing time (avg. 13 seconds).
The solutions computed from IPIP-H were always feasible for IPIP and were within 5%
of the optimal solution. We compared IPIP-H to Inverse Planning Simulated Annealing
(IPSA) [2,68], a dose planning model which is clinically deployed and has been used world-
wide for over a decade. IPSA was not able to compute a dose plan which met all the dose
objectives for any of the patients using its standard class solution. Therefore, IPSA would
require iterations of manual fine tuning of its optimization parameters until a feasible dose
plan was found. IPIP-H would not require iteration.

3. We formulated the problem of positioning HDR brachytherapy needles as a spatial
coverage problem: given a large candidate set of needles for insertion, anatomy data, and a
user parameter, δ, find the smallest candidate needle subset such that the minimum distance
between any point in the prostate and a needle in the chosen set is less than δ. We showed
that this problem could be represented as a set cover integer program.

4. We developed Needle Planning by Integer Program (NPIP), an algorithm which gener-
ates a set of candidate needles represented by skew-line segments, solves an integer program
which chooses a candidate needle subset that covers the prostate according to the user-
parameter, δ, and verifies that the final needle configuration meets dose objectives by com-
puting a dose plan for it using IPIP. NPIP uses a candidate needle set which is approximately
10 times larger than considered with Hyrbid Inverse Planning Optimization (HIPO) [52], the
only other fully computerized needle planning system known to us. By construction, NPIP
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avoids choosing needles which penetrate OAR and needles which collide with each other. We
used NPIP to compute needle configurations for the same patients used for the IPIP-H study
and compared the computed needle configurations to the ones implanted by the physician.
NPIP could find needle configurations which met the RTOG-0321 dose objectives and used
10 or fewer needles; the physician used 16 needles. NPIP always computed a needle con-
figuration that avoided puncturing the penile bulb; the average number of punctures made
by the physician was 5. NPIP required an average of 5 minutes of computing time, but
there was a wide range of run times, up to almost one hour. We also conducted a sensitivity
analysis of NPIP-generated needle configurations to placement errors on the order expected
from current needle insertion robots in a clinical environment, which was about 2 mm [80].
We showed that, although dose objectives could be met with 10 or fewer needles, 16 needles
were required to meet dose objectives robustly.

5. We designed and implemented the first end-to-end robotic HDR brachytherapy exper-
iment. Our experiment utilized Contributions 1 through 4, and Acubot-RND [108], a needle
insertion robot specialized for needle insertion. We planned and executed NPIP-generated
needle configurations in a fully equipped brachytherapy environment on two anatomically-
correct gelatin phantoms. There were non-trivial placement errors between the planned
needle configuration and the implanted needle configuration. We separated the error into
systematic error and random error. We computed the systematic error as the rigid least
squares fit between points regularly sampled along the needles in the planned and actual
needle configuration [5]. The total RMS error between the planned and actual needle config-
uration was 3 mm for the first phantom and 5 mm for the second phantom. We computed the
random error as the total RMS error between the planned and actual needle configuration
after the systematic error was removed. The random error was 1.4 mm for the first phantom
and 2.5 mm for the second phantom. Our random errors were close to the placement error of
current needle insertion robots which have more sophisticated calibration devices [80], which
is about 2 mm. Although there were discrepancies between the planned and actual needle
configuration, we showed that our end-to-end robotic experiment could execute the planned
needle configurations with sufficient accuracy to meet the RTOG-0321 dose objectives and
avoid puncturing OAR. We compared the needle configurations executed by our robotic
workflow with a needle configuration executed by a world-class brachytherapist, who also
used 16 needles, met dose objectives and avoided puncturing OAR. Therefore, the needle
configurations executed in our experiment are comparable to an expert physician.

This remainder of this dissertation is organized as follows. Chapter 2 gives relevant back-
ground for this dissertation including the brachytherapy clinical environment and workflow,
treatment objectives, planning, and an overview of linear and integer programming. Chapter
3 presents our work on IPIP and IPIP-H, Chapter 4 presents our work on NPIP, and Chap-
ter 5 presents our end-to-end robotic needle insertion experiment. Chapter 6 presents some
initial work using developing treatment planning algorithms for a radiotherapy device called
Gamma Knife Perfexion, which is used to treat tumors in the head. Chapter 7 concludes
this dissertation and describes avenues of future work.
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Chapter 2

Background

This chapter gives relevant background on brachytherapy, mathematical optimization and
how it has been used for brachytherapy planning, robots that have been specifically designed
to assist in brachytherapy needle insertion, and the limitations of current practices that
are addressed in this dissertation. Since the focus of this dissertation is on prostate HDR
brachytherapy, “brachytherapy” always refers to this type of brachythery unless otherwise
stated.

2.1 Prostate High Dose Rate Brachytherapy

The standard clinical environment for prostate HDR brachytherapy includes an operating
room, a transrectal ultrasound (TRUS) probe and associated hardware (i.e. monitor, com-
puter, etc), hollow needles specialized for brachytherapy, a needle guide or template, a CT
scanner, a computerized planning system, a radioactive source, and a pneumatic remote
afterloading device which houses and moves the source. Needles are sometimes referred to
as catheters when they are flexible, which is a useful property for producing non-straight
needle trajectories.

The standard brachytherapy workflow consists of five main steps: (1) needle insertion, (2)
anatomy digitization, (3) planning, (4) delivery, and (5) removal. These steps are described
in the following paragraphs.

The procedure begins by taking the patient into an operating room. The patient under-
goes general anesthesia, and a physician inserts 16-18 needles, under TRUS guidance, into
the prostate through the perineum, the patch of skin between the testicles and the anus.
Currently, needles are inserted with the assistance of a rigid template. A template is a rigid
device which is in a locked orientation relative to the patient and constrains the movement of
the needles during insertion. The needle movement is constrained by a grid of evenly-spaced,
parallel holes which are drilled into the template. The tips of the needles can be observed
in real time using TRUS. The holes to be used are selected according to the experience of
the physician to produce a needle arrangement which has an even distribution of needles
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within the prostate volume and avoids puncture of nearby organs, especially the urethra
which runs through the prostate. However, since the template only allows a limited set of
parallel trajectories, sometimes puncturing organs, such as the sensitive structures near the
penile bulb, is unavoidable.

A few clinics have developed freehand needle insertion techniques which do not require a
template [57]. Freehand techniques allow the physician to produce skew-line (i.e. straight,
non-parallel, non-intersecting) needle arrangements which have an even distribution of nee-
dles in the prostate and avoid puncturing nearby organs. Freehand techniques also use
catheters rather than needles, which gives the physician additional freedom to control the
arrangement of needles. There are clear advantages to using freehand techniques to reduce
puncture trauma; however, they require years of training to master and are only taught by
a limited set of physicians and clinics.

Once the needle arrangement is inserted into the patient, the patient anatomy and nee-
dles are CT scanned in parallel slices taken in the z-direction (from feet to head). The
scans are sent to a computerized treatment planning station which provides a touchscreen-
stylet interface for digitizing the patient anatomy and needles. In each CT image slice, the
physician uses a stylet to contour the individual organs, or regions of interest. For prostate
brachytherapy, the regions of interest include the prostate, urethra, bladder, and rectum. At
the UCSF clinic, the penile bulb is also contoured. The physician also marks the location
of the needles in each slice. Positions along each needle where a radioactive source can be
halted, i.e. dwell positions, are interpolated by the planning system every 5 mm along the
length of each needle, beginning at the tip. When the physician is finished, the digitized
anatomy consists of a set of 3D coordinates for each of the regions of interest contoured by
the physician, and a set of 3D coordinates denoting the dwell positions. From this point
forward, the term “anatomy” will always refer to the digitized anatomy set unless otherwise
stated. Figure 2.1 shows a digitized anatomy set.

The more time a radioactive source stays at a dwell position, the more dose it will deliver
to surrounding tissue from that location. Thus the dose distribution can be controlled
through the dwell times. Treatment planning can be summarized by the following problem
statement. Given (1) an anatomy set, (2) dwell positions, (3) radioactive source properties,
and (4) and treatment objectives, determine a dose plan, i.e. a set of source times spent at
each dwell position, that will produce a radiation dose distribution which meets treatment
objectives. In summary, treatment objectives generally consist of delivering a physician-
specified “prescription dose” of radiation to the prostate while limiting the allowed dose
to nearby healthy organs, or organs at risk (OAR). Here the prescription dose is given
in units of centi-Gray (cGy), which is a unit of absorbed radiation. There have been a
number of computerized treatment planning systems designed to help guide the user towards
a satisfactory dose plan. A more complete description of treatment objectives and treatment
planning systems is given in the following section.

Once a dose plan is computed, the needles are connected to a device called a remote
afterloader, which executes the dwell times. The remote afterloader houses a radioactive
source in a shielded compartment, and it can pneumatically drive the source through each
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Figure 2.1: Shown are the regions of interest for prostate HDR brachytherapy: prostate,
bladder, rectum, and urethra. Also shown is the penile bulb, which is contoured at the
UCSF clinic. A set of implanted needles is also shown in cyan, with the dwell positions
marked in magenta.
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needle, halting the source at each dwell position for the specified dwell time. After the dwell
times are executed, the source is returned to the afterloader, and the needles are removed
from the patient.

Prostate HDR brachytherapy is sometimes fractionated [118], meaning the same dose
plan is delivered to the patient multiple times with several hours of rest between deliveries.
Between deliveries, the needles are disconnected from the afterloader but remain in the
patient. After a few hours, the needles are reconnected to the afterloader and the dose
plan is delivered again. Since healthy cells are known to have superior recovery potential
to radiation exposure than cancer cells, fractionation allows healthy cells to recover during
the rest period without decreasing the lethality of treatment to cancer cells. However,
fractionation also consumes more time and resources. Although the work in this dissertation
is generalizable to fractionated treatment, all treatments are assumed to be single fraction.

LDR brachytherapy for prostate cancer is referred to as prostate permanent-seed implant
(PPI) brachytherapy. In PPI brachytherapy, the radioactive sources, or seeds, are inserted
into the prostate where they are left indefinitely. The dose delivered to surrounding tissue
is integrated over all the half-lives of the radioactive sources. Thus, the distribution is
controlled by the configuration of seeds rather than the source time spent at dwell positions.
In HDR brachytherapy, the source strength is much higher than the seeds used for PPI
brachytherapy, and therefore only requires a short exposure period. The dwell times are
sufficiently short compared to the half life of the source such that the radioactive properties
of the material can be assumed constant during the treatment time.

HDR brachytherapy is an effective treatment for prostate cancer with over 90% survival
rate at 12 years [113]. However it can also have serious negative side effects. Several studies
confirm that prostate brachytherapy can result in incontinence [29,51] and impotence [34,75].
These side-effects are a result of excessive radiation to the penile bulb [29, 34, 75], number
of needles used [112], and needle penetration through sensitive structures near the penile
bulb [78].

This dissertation develops mathematical models for computing HDR brachytherapy dose
distributions and needle configurations with the goal of reducing side effects and maintaining
therapeutic effectiveness. The following two section gives relevant background to current
methods of brachytherapy planning.

2.2 Inverse Planning

Before modern imaging devices such as magnetic resonance imaging (MRI) and computer-
ized tomography (CT) in the early 1990’s, only bony structures and needles were visible
for planning. Since soft tissues, including the prostate, were not visible, computing dose
distributions, i.e. dose planning, for both LDR and HDR brachytherapy focused on creating
a homogeneous dose distribution in the region of the needles. In other words, since the
exact position of the prostate was not known, the prostate region was blanketed with radi-
ation, with special attention given to ensure that there was no volume receiving extremely
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Index Requirement
VProstate

100 ≥ 90%
VUrethra

125 ≤ 0.1 cm3

VRectum
75 ≤ 1 cm3

VBladder
75 ≤ 1 cm3

Table 2.1: Dose restrictions according to the RTOG-0321 dosimetric protocol

high dose. Thus, the prostate was certain to be irradiated, but surrounding healthy organs
also received significant dose. This type of dose planning is called forward planning. The
improvement of medical imaging devices allowed for planning techniques which took into
consideration the amount of radiation delivered to each organ - a type of planning called
inverse planning. Inverse planning has superior patient outcome than forward planning [49]
and is now standard in most clinics.

In inverse planning, it is necessary to define the dose delivered to an organ given a dose
plan. For HDR brachytherapy, and many other radiotherapies, the dose delivered to an
organ, G, from a dose plan is defined as the volume, V , receiving more than a threshold
dose R. This aggregated dose is called a dosimetric index and is denoted by VG

R. For each
treatment, the physician specifies a prescription dose, Rx, which should be delivered to as
much of the prostate volume as possible. It is customary for R to be given as a percentage of
Rx when specifying dosimetric indices. For example, the prostate volume receiving at least
100% Rx is denoted by VProstate

100 . This term is interchangeable with target coverage and is
the dosimetric index most closely associated with therapeutic effect (i.e. killing the cancer).

The Radiation Therapy Oncology Group (RTOG) has determined a set of dosimetric
index constraints which are correlated with long term treatment success [46,48]. The RTOG-
0321 dosimetric protocol is given in Table 2.1. Note that dosimetric indices for the prostate
are stated as a percentage of the total prostate volume, while dosimetric indices for OAR are
specified in cm3. The two main reasons for this discrepancy is that (1) the entire prostate
volume is usually contoured, which is not the case for most OAR, and (2) the irradiated
volume of OAR necessary to produce negative side effects does not scale with the size of the
organ, and therefore absolute volume is a more appropriate metric for constraint. It is also
important to mention that the results of Hsu et al., 2010 [46], only show that compliance
with these dose objectives yields better results than not complying with these objectives.
Specifically, there is no evidence to show that 95% coverage is better than 90% coverage with
all other criteria being equal. Therefore, this dissertation focuses on compliance with dose
objectives rather than the degree of compliance.

There are two qualitative tools for evaluating a dose distribution worth mentioning. The
first dose evaluation tool is called a cumulative dose-volume histogram (DVH). For each
organ, the x-axis of the associated DVH denotes dose, and on the y-axis is the organ volume
receiving at least the dose. In other words, a DVH for an organ can be defined the set
of pairs, (D,Vorgan

D ). A dose volume histogram is shown in Figure 2.2. A DVH can give
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Figure 2.2: Example DVH for the prostate. On the x-axis is dose, as a percentage of
the prescription dose, and on the y-axis is the organ volume receiving at least the given
dose. A DVH can be thought of as all pairs, (D,VProstate

D ). DVHs provide intuition for the
dose distribution within the prostate, but there are no quantitative metrics to evaluate and
compare them.

intuition about the distribution of dose inside an organ. For the prostate, it is desired to
have the DVH stay above 90%, or as high as possible, until the prescription dose, then drop
off as quickly as possible afterwards. The second is a heat map of the dose distribution shown
in consecutive slices. Figure 2.3 shows such a heat map. These heat maps can give the user
an intuitive sense of the coverage, exposure to OAR, and distribution of high-dose regions
inside the prostate. Since there are no quantitative metrics to evaluate or compare dose
distributions using DVHs or heat maps, we avoid using these qualitative tools to evaluate a
dose distribution. Instead, we will evaluate dose distributions in terms of their compliance
to dose objectives defined by dose-volume constraints.

There have been a number of computational inverse planning tools designed to guide
the user towards a final plan for both HDR brachytherapy and PPI brachytherapy. These
methods are described in the following section.
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Figure 2.3: Heat map example for HDR brachytherapy dose distribution. The heat maps
are shown in consecutive slices going in the positive z-direction (from feet to head). Shown
are the prostate (outer contour) and inner contour (inner contour). Dose over 200% the
prescription dose is shown in red, dose over 150% the prescription dose is shown in orange,
dose over 125% is shown in yellow, dose over 100% is shown in green, dose over 75% the
prescription dose is shown in cyan, and dose less than 75% the prescription dose is shown in
blue. Ideally the entire prostate region would be green, and everything else would be blue.
However, due to physical and geometric constraints, this is never possible.
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2.3 Computational Inverse Planning Tools

When inverse planning was novel in the early 1990’s [38], a protocol for the dose which should
be delivered to organs was not known. Therefore, early computational tools for computing
both PPI and HDR brachytherapy dose plans used multi-objective functions to control the
dose distribution. Some tools maximized a weighted sum of user-defined dosimetric indices
[20, 61, 104], positive weight for dosimetric indices which should be high, such as target
coverage, and negative weight for dosimetric indices which should be low, such as those for
OAR. More recent tools minimized the sum of penalty functions [18, 22, 52, 53, 66, 67]. A
penalty function was assigned to each discretized organ voxels in terms of the dose received.
For voxels in organs which should receive dose, such as the prostate, the penalty function
would accumulate linearly below a threshold dose, i.e. the prescription dose, according to
a penalty weight assigned for that organ. For voxels in OAR, the penalty function would
accumulate for dose above some user-specified threshold dose for that organ. The use of
penalty functions to control the dose distribution is described in further detail in Chapter 3.
Thus, multi-objective methods are effective at representing the relative importance of target
coverage versus healthy organ sparing by a single cost function and the relative weights
associated with each dose objective.

Any planning systems always have two major components: a mathematical model and a
solution algorithm for computing a plan for the model. The aforementioned multi-objective
models have traditionally been solved with genetic algorithms or simulated annealing. How-
ever, these algorithms have very few mathematical guarantees on the quality of the final
solution and on the computational effort required to achieve solutions of a given quality.
Despite the limitations of simulated and geometric algorithms as solution algorithms, and
therefore the limitations of the planning systems that use them, this dissertation focuses
on the underlying mathematical models used to describe inverse planning objectives and
the properties of these models, rather than comparing solutions algorithms. For example,
Alterovitz et al, 2006 [2], compared a linear programming solution method with a simu-
lated annealing solution method for the same penalty model. This dissertation focuses on
comparing different models and the ways in which they can improve brachytherapy planning.

The advantage of multi-objective dose planning is that the relative importance between
the different objectives can be represented by the relative weights of each objective in the
cost function. By varying the objective weights, the set of dose distributions (evaluated by
dosimetric indices) that are generally possible can be explored, which can eventually lead to
a dosimetric protocol based on a set of desired dosimetric indices and constraints on them;
for example, those specified by the RTOG-0321 dosimetric protocol.

However, multi-objective planning methods are not well suited for planning towards an
established protocol because they do not necessarily guarantee compliance with dose-volume
constraints on a per-patient basis. In other words, given an anatomy set and set of dose
objectives, there is no mathematical guarantee that multi-objective methods will return a
solution which complies with the dose objectives. Thus, multi-objective planning towards
a dose plan which complies with dose-volume constraints is an iterative process. The user
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specifies an initial set of objective weights for each for each dose objective, and computes a
dose distribution based on those penalty weights. If the dose distribution complies with the
objectives, then it can be delivered to the patient. If it does not comply with the objectives,
then the user must adjust the penalty weights and re-compute dose distributions until it does
satisfy the objectives. Although dose objectives can usually be met in a few iterations given
a good implant, manual fine-tuning of computational parameters can be a time-consuming
process. This is especially true since physicians are trained to evaluate dose distributions in
terms of dosimetric indices rather than system-specific optimization parameters.

Dose planning methods assume that the needles have already been inserted into the
patient and digitized along with the anatomy. However, there has been very little work
in computational needle planning for HDR brachytherapy [52], probably because digitized
anatomy information is usually not available during needle insertion when following the stan-
dard workflow. The study by Karabis et al, 2009 [52] combined needle and dose planning
into a single optimization model. Needles were selected from a candidate set which contained
one needle for every hole in the template and the dose planning method was multi-objective.
The model could not be solved quickly as an integer program (discussed in the following
section), even given three days of computational time, for two of the three trials, but high
quality solutions could be found using simulated annealing. Although needle planning is in-
compatible with the current HDR brachytherapy workflow, it may be possible to incorporate
properties of the PPI brachytherapy workflow, which does have anatomy information during
needle planning.

There are two studies that have taken skew-line needle planning into account for PPI
brachytherapy that we know of. Roy et al, 1991 [96], did some computational needle planning
that utilized non-parallel, skew-line needles. However, their optimization method has a
significant manual component, i.e. required significant human input and decision making,
and did not take needle collisions into account since in PPI brachytherapy, only one or a few
needles are inserted at once. More than 15 years later, Fu et al, 2006 [40] used simulated
annealing algorithm to optimize a needle configuration to the seed positions. That is, given a
set of seeds and their desired location, they optimized a set of skew-lines that could implant
the seed configuration.

2.4 Mathematical Programming

Many dose planning approaches draw on modeling and solution methods from the field of
mathematical programming, commonly known as optimization. The work presented in this
dissertation draws particularly on linear and integer programming. This section summarizes
the fundamentals of these optimization models. A thorough explanation of linear program-
ming can be found in Introduction to Linear Optimization by Bertsimas [14] and Convex
Optimization by Boyd [16], and a complete overview of integer programming can be found
in Integer and Combinatorial Optimization by Nemhauser and Wolsey [116].



CHAPTER 2. BACKGROUND 13

2.4.1 Linear Programming

A linear program (LP) is a problem with the following form:

maximize cTx,

(LP) subject to: Ax ≤ b,

and x ∈ Rn,

where the known parameters c, A, and b are n × 1, m × n, and m × 1 real matrices,
respectively, and x is an n× 1 vector of decision variables (i.e. values which can be chosen).
An inequality of the form aix ≤ bi, where ai is the ith row of A and bi is the ith element of b,
is called a constraint. Linear programs are usually specified in terms of constraints because
the structure of the model relative to the underlying problem is more intuitive in this form.
A linear program constraint form is given below.

maximize cTx,

(LP) subject to: aix ≤ b, ∀i,
and x ∈ Rn.

A feasible solution is an x that satisfies Ax ≤ b, and the feasible set is the set of all
feasible solutions. An LP is infeasible if the feasible set is empty. The term cTx is called
the objective function. A feasible solution is optimal if there are no other feasible solutions
with higher objective function value. Note that there may be multiple optimal solution with
the same objective function value. An LP is unbounded if there are feasible solutions which
can make the objective function arbitrarily large. It can be proven that a linear program is
either infeasible, unbounded, or has an optimal solution.

The most popular LP solvers are Simplex and the Interior Point Method (IPM) algo-
rithms. The feasible set of a linear program forms a mathematical object known as a poly-
hedron, {x : Ax ≤ b}. Assuming that an LP is feasible and bounded (has a finite optimal
solution), it can be proven that there is at least one optimal solution at a corner, or extreme
point, of the polyhedron. Simplex works by starting from a vertex of the feasible set, and
checks if there are any adjacent vertices which have better objective function values. If so,
then the improving vertex becomes the current vertex of the next iteration, and the process
is repeated until no improvements are possible. Because of the mathematical structure of
polyhedrons, once there are no improving vertices adjacent to the current vertex, then the
solution is provably optimal. Although Simplex has not been proven to be an efficient algo-
rithm, it works extremely well in practice [15, 105]. The IPM starts from an interior point
of the polyhedron, and follows the objective function to an optimal solution. IPM has been
shown to be polynomial time [55], which for the purpose of this dissertation, means that
LPs can be reliably proven to be infeasible, proven to be unbounded, or solved to optimality
within a few minutes on a personal computer, even with hundreds of thousands of variables
and constraints.
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2.4.2 Integer Programming

An integer program (IP) is a linear program where some or all of the variables are restricted
to be integer. An IP in general form is given below.

maximize cTx,

(IP) subject to: Ax ≤ b,

and xi ∈ R, i = 1, ..., p xi ∈ Z, i = p+ 1, ..., n.

Integer programs are an important modeling tool for solving real-life problems which
require decisions to be made in discrete quantities, e.g. often an item must be bought or
not bought, it cannot be partially bought. However, even though IPs are able to model
scenarios which cannot be modeled by linear programs, there are no known polynomial
time algorithms for the general integer programs. The following paragraphs describe some
terminology associated with integer programs, and a description of a general branch and
bound (B&B) method for solving them. The section closes with a brief note on the use of
the word “optimal” in relation to dose planning and optimization.

A vector x is called an integer feasible solution for IP if it satisfies all the constraints
and the integrality requirements of an IP. The set of all integer feasible solutions is referred
to as the integer feasible lattice. A vector x is called a fractional solution if it satisfies the
constraints of IP but not the integrality requirements. A variable is said to have a fractional
value if it is (1) integer constrained and (2) has a non-integer value in a fractional solution.

If the integrality requirements of IP are dropped, the resulting optimization model is
called the linear programming relaxation of IP, (R(IP)), because the result is a linear pro-
gram. If the optimal solution of R(IP), assuming it exists, is integer feasible, then the
solution is provably optimal for IP. However, the optimal solution to R(IP) is generally frac-
tional because it is unlikely that the constraints will come together in a way that the optimal
solution for R(IP) will fall exactly on the integer lattice.

If the optimal solution for R(IP) is fractional, its optimal objective function value is
always superior to the optimal objective function value of IP because the feasible set for IP
is a subset of the feasible set of R(IP), and therefore, the R(IP) cannot produce a worse
solution than IP. As a consequence, the objective function value of R(IP) gives an upper
bound on the optimal objective function value of IP.

Integer programs can be solved using branch and bound (B&B) algorithms. The first
step of B&B is to take the linear programming relaxation of IP. If the optimal solution for
R(IP), is integer feasible, then the solution is optimal for IP. If the solution is fractional,
B&B begins constructing a tree of nodes called the branch and bound tree, and the solution
for R(IP) becomes the first, or root, node.

The branch and bound tree is constructed according to the following procedure. Let x
be a fractional solution at an arbitrary B&B node, the current node, and xi be a fractional
variable at the node having the value xi. Since xi must be integer, then the optimal solution
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must have xi ≤ bxic or xi ≥ dxie. Thus, the problem of solving the original IP can be
divided into two subproblems: The original IP with the added constraint xi ≤ bxic and the
original IP with the added constraint xi ≥ dxie. These two subproblems, the down branch
and up branch, respectively, are associated with two child nodes of the current node. The
variable xi in the current node is called the branching variable. There are many methods for
choosing which fractional variable to branch on, but these methods are beyond the scope of
this overview.

As the branch and bound tree grows, nodes lower in the tree accumulate constraints.
With the accumulation of constraints, the linear programming relaxation of the IP with
the additional constraints is either fractional, infeasible, or integer feasible. Fractional con-
straints continue to grow the tree. The child nodes of infeasible or integer feasible nodes do
not need to be searched, and so the branch and tree does not grow from these nodes.

When an integer feasible solution is found at a node, then its objective function value can
be compared with the objective function value of all the fractional solutions in the branch
and bound tree. If a fractional objective function value is lower than the objective function
value of the feasible solution, then the optimal solution cannot be in any child node of that
fractional solution, and the node can be pruned from the tree (i.e. do not search any of its
child nodes). This is a consequence of the fact that (1) the relaxation is an upper bound
on the objective function value of any integer feasible solution that could be found in any
child node and (2) there is already an integer feasible solution with higher objective function
value. The ability to prune branches, even ones far away from the current node, based on
these properties gives B&B an advantage over enumerating all the integer possibilities.

The difference, whether relative or absolute, between the largest fractional solution ob-
jective function value of a node whose branches have not been explored (the upper bound)
and the largest integer feasible solution objective function value (the lower bound) is called
the gap. As nodes are searched, the upper bound decreases and as integer feasible solutions
are found, the lower bound increases. The node with the highest integer feasible solution
objective function value is provably optimal when the gap is zero. This is easy to argue
since an optimal solution implies there does not exist any other feasible solution with higher
objective function which is guaranteed when the upper bound is equal to lower bound.

Linear programs can be solved quickly and there are efficient mathematical methods of
using the solution of a linear program to solve the same linear program with an additional
constraint, such as when branching on a fractional variable. However, the number of nodes
in the tree grows exponentially, and in the worst case, every possible integer combination
would have to be enumerated and checked before an optimal solution could be found and
proven to be optimal. Even for an integer program with as few as 100 variables, enumerating
and checking all the possibilities could easily take billions of years, even using the fastest
computers in the world.

The gap gives an estimation of the quality of the best integer feasible solution found so
far. For instance, if the gap is small, then we know that the best feasible solution is close to
optimal. It may even be optimal but not yet proven by B&B. In many instances of integer
programming, these suboptimal, or not-provably-optimal solutions are still of practical value
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if the gap is small.
Although integer programs are provably difficult in the general case, there has been a

tremendous amount of research in developing mathematical methods for solving specific in-
stances of integer programs and/or improving the performance of B&B. These methods can
generate heuristic, high-quality feasible solutions for the general model (i.e. small gap);
produce new constraints called cuts for the model which remove fractional solutions but
not integer solutions, which improves the bound of the relaxation at any node; or deter-
mining branching variables which are promising for reducing the gap. The development of
customized solution strategies has made integer programming a practical solution for many
real-world problems.

2.4.3 Mathematical Programming for Inverse Planning

Linear and integer program have been used in inverse planning. For example, the study by
Alterovitz et al, 2006, [2], created an equivalent linear program to the simulated annealing
model presented by Lessard et al, 2004 [66], which provided much stronger performance
guarantees on optimality and computation time. A similar linear programming reformulation
was created and tested on the simulated annealing model presented by Karabis, 2005 [53]. A
linear program was also used to compute the dose distribution for an external beam therapy
tool called Intensely Modulated Radiation Therepy (IMRT) which constrained the mean of
the dose to volume in each organ above a user-specified dose-threshold [95]. In other words,
this method constrained the mean of all the dosimetric indices for an organ above a dose
threshold. However despite the use of more formal optimization techniques, these methods
do not enforce dose volume constraints, and therefore are still parametric and iterative.

Integer programming has been used for PPI source configuration planning [62–64] which
used binary variables, variables which could only take on values 0 or 1, to model the place-
ment or non-placement of a source at a candidate location. Lee et al, 1999, developed a
custom algorithm for solving a multi-objective integer program for determining the place-
ment of these sources which could find a solution within a few minutes. Again, the model used
was multi-objective and therefore would require iteration to reach a solution which met dose-
volume constraint objectives. Also, although PPI brachytherapy and HDR brachytherapy
are very similar in practice, the discrete nature of placing sources versus the continuous na-
ture of dwell times make PPI and HDR brachytherapy mathematically different. Therefore,
this customized solution method for PPI brachytherapy is not usable for brachytherapy.

Finally, it is possible to use integer programming to model dose-volume constraints [31].
However, attempts to solve practical instances of these models using standard software such
as CPLEX, have not yielded solutions quickly enough to be clinically viable.
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2.5 Robot-Assisted Brachytherapy

There have been several robotic hardware platforms specially designed to assist in the in-
sertion seeds for PPI brachytherapy [19, 28, 32, 33, 59, 60, 79, 90, 100, 108–111] , and they are
capable of operating within a standard brachytherapy clinical environment. These robots can
bring a needle to a virtual continuum of insertion points and angles, which simulataneously
provides degrees of freedom that can be used to avoid OAR and precision beyond that of
a template. Once a desired source configuration is computed by a dose planning system,
the sources can be implanted into the patient one at a time, or several at a time if they are
collinear, using these robots. Some robots can be brought to a needle entry point and inser-
tion angle by joystick or other manual control. The needle can then be inserted a desired
depth, or the physician can manually insert the needle under TRUS guidance. There have
been several studies which confirm the placement accuracy of robot-assisted brachytherapy
workflows [1,74,101], even in a living canine subject [24]. Thus, robot-assisted brachytherapy
is a promising paradigm for improving brachytherapy, reducing side effects, and reducing the
skill requirements of performing brachytherapy at an expert level. In fact as of this year, a
set of guidelines is currently being developed by the American Association of Physicists in
Medicin (AAPM) for image-guided robotic brachytherapy [89].

There are several limitations for applying these robotic platforms to an HDR brachy-
therapy workflow. HDR brachytherapy requires a configuration of needles to be simultaneous
inside the patient, while PPI brachytherapy robots insert a single needle several times. Also,
there has been very little work in needle configuration planning for HDR brachytherapy and
therefore, the positioning of the needles would have to be decided upon by the physician,
which would reintroduce skill dependence. Finally, in PPI brachytherapy, the anatomy is
known when the needles are inserted, because it is required to plan the seed configuration.
However, in HDR brachytherapy, the needles are inserted before the anatomy is scanned.
Thus, using robots for HDR brachytherapy would require an alteration of the standard
workflow.

2.6 Addressing Previous Work

This dissertation directly addresses several limitations of current HDR brachytherapy dose
planning, needle planning, and robotic-assistance. We develop a fast algorithm for directly
optimizing dose-volume constraints, which are the standard objectives for HDR brachy-
therapy. Thus, our method does not require manual fine-tuning of optimization parameters,
only the specification of dose objectives. Our method can also claim very strong mathemat-
ical guarantees on the quality of the final dose distribution relative to the dose objectives,
and how long it will take to acquire a solution. We also develop an algorithm for computing
anatomy-specific needle configurations over a set of needles which approximates the needles
which can be inserted by a robot, which is a much larger set than those used in Karabis et
al, 2009 [52]. Although this algorithm is guaranteed to be tractable, it works reasonable well
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in practice. Finally, we modify a needle insertion robot specialized for PPI brachytherapy
to perform HDR brachytherapy, and use it in an end-to-end brachytherapy workflow which
includes our needle and dose planning algorithms. We show that the needle configurations
we plan can be implanted with sufficient quality and accuracy to meet objectives as planned.



19

Chapter 3

Dose Planning with IPIP

3.1 Overview

This chapter expands on work presented in Siauw et al, 2011 [102], which developed Inverse
Planning by Integer Program (IPIP), a dose planning method for HDR brachytherapy. This
dose planning method has several advantages over multi-objective methods. In particular,
dose-volume constraints, a standard for evaluating HDR brachytherapy dose plans, are di-
rectly expressed and enforced in IPIP. Thus, a dose plan meeting dose objectives can be met
without having to iterate through system-specific parameters.

However, this method utilizes an integer program, which is known to be difficult to solve
in the general case (see Background). This means that the expected solution time is long
enough to interrupt the standard clinical workflow. Therefore, we also develop a heuristic for
IPIP, IPIP-H, which we show can compute high quality feasible solutions given the standard
RTOG-0321 clinical objectives [48]. This heuristic solves a sequence of two linear programs
and as a consequence is polynomial time solvable [55].

It is important to mention that Siauw et al. 2011 [102] only presented computational
results on the heuristic, and therefore the term “IPIP” was used to refer to the heuristic.
Since this chapter references both the integer program and the heuristic, “IPIP” is used
to refer to the integer program, and IPIP-H is used to refer to the heuristic. This chapter
repeats the derivation of IPIP and IPIP-H, and also presents computational results for IPIP,
IPIP-H, the relaxation for IPIP, IPIP-R, and Inverse Planning Simulated Annealing (IPSA),
which is a commercially deployed dose planning system used world wide for over a decade.
These studies were not included in Siauw et al., 2011 [102].

3.2 Background

For the purpose of dose planning, it useful to discretize the organ volumes into voxels. A dose
control point, or dose point, is a point at the center of each voxel, and the dose delivered to
the dose point is representative of the dose delivered to every point within the voxel. If the
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dose points are generated on a finely and evenly spaced grid which covers the entire region
of interest, then a dose distribution can be approximated by the set of doses delivered to the
dose points. Also, dosimetric indices can be approximated by the sum of the dose points
receiving over the threshold dose times the voxel volume.

Several inverse planning tools such as Inverse Planning Simulated Annealing (IPSA)
[66] and Hybrid Inverse Planning Optimization (HIPO) [53] plan the dose distribution by
penalizing the dose received at each dose point. Given a dose d at a dose point, the penalty
is computed using a piecewise linear penalty function with the following properties: within a
dose interval [Dmin, Dmax], the penalty is 0, below Dmin, the penalty is Mmin(Dmin− d), and
above Dmax, the penalty is Mmax(d−Dmin). Figure 3.1 shows an example penalty function.
For compactness, we represent the penalty function for dose points in an organ using the
quadruplet (Mmin, [Dmin, Dmax],Mmax). All dose points within the same organ have the same
penalty function, and therefore, the relative importance of the dose delivered to each organ
can be represented by the magnitude of the penalty weights associated with dose points in
each organ. For example, if Mmin for the prostate is 4 and Mmax for the bladder is 1, this
is analagous to delivering dose above Dmin to the prostate being four times as important
as delivering dose below Mmin to the bladder. The goal of the solver is to find a dose plan
which has the lowest total penalty.

Multi-objective dose planning methods such as IPSA and HIPO do not enforce dose-
volume constraints and can have undesirable behavior. To highlight this fact, consider
the following thought experiment. Let the regions of interest contain two prostate dose
points, p1, p2, and two urethra dose points, p3 and p4, and let the prescription dose be 1000
cGy. For prostate dose points, let the penalty weight be defined by (2, [1000, 1500], 2) and
(0, [0, 1250], 1) for the urethra dose points. Now consider two dose distributions, D1 and D2,
which are defined by the set of doses {d1, d2, d3, d4}, where di is the dose at pi.

D1 = {950, 960, 1200, 1300}

and
D2 = {1000, 1100, 1240, 1490}

The total penalty for D1 is 230, and the total penalty for D2 is 240. Therefore according
to this set of penalty weights, D1 is superior. However the dosimetric indices for D1 are
VProstate

100 = 0 dose points (0% target coverage), and VUrethra
125 = 1 dose point, while D2 has

VProstate
100 = 2 dose points (100% target coverage), and VUrethra

125 of 1 dose point. Thus according
to dosimetric indices, D2 is superior (i.e. more coverage, same urethra dose).

Although in terms of biological effect, the two dose plans are very similar, and it is
possible that a different set of penalty weights may yield a better dose plan, this experiment
illustrates where penalty methods do not perform as desired. Thus, penalty methods are
iterative. A user specifies a set of penalties that usually produce a good dose distribution.
These initial penalties are set according to a standard class solution which has been found
through clinical experience [67]. Then the user observes the dose distribution, i.e. compliance
with dose objectives. If the plan does not conform to the objectives, the penalty weights are
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Figure 3.1: Example of piecewise linear penalty function. Within an interval, [Dmin, Dmax],
no penalty is accumulated. Outside the interval, penalty is accumulates linearly. Penalty
functions help control the dose distribution during dose planning, but do not directly enforce
dose volume constraints.

adjusted and the process is repeated until a satisfactory dose plan is achieved. Although the
RTOG-0321 can usually be achieved with several iterations, the iterative process requires
manual fine tuning of many parameters which are specific to the model (e.g. IPSA or HIPO),
which can be a time consuming process. The dose planning method presented in this chapter
directly optimizes dosimetric indices and therefore dose not require manual tuning.

3.3 Method and Materials

3.3.1 Model Formulation

In this section, Inverse Planning by Integer Program (IPIP) is developed. A description of
the parameters and variables of this model are given for reference in Table 3.1. Note the
difference in notation presented in this chapter and in Siauw et al. 2011. The changes were
made to assist in clarity.

Let P be a set of 3D coordinates for a grid of evenly spaced dose points, Is be the set of
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Term Description

G Set of organs
P Set of dose points
Is The set of indices of dose points for gs ∈ G
T The set of dwell positions

Dij The dose rate from τj ∈ T to pi ∈ P
tj Dwell time at τj ∈ T
di Dose at pi ∈ P
Rs Threshold dose for gs ∈ G
Ms Maximum dose for gs ∈ G
xi Indicator variable for pi ∈ P
vs Dosimetric index for gs ∈ G
Ls Lower bound for vs
Us Upper bound for vs

Table 3.1: IPIP terms

dose points that belong to organ s, and T be the set of dwell positions for a given implant.
It is assumed that the grid of dose points covers the entire region of interest, meaning that
each organ has enough dose points to accurately count a dosimetric index for it. Also, let
the dose rate parameter, Dij > 0 [cGy/s], be the dose received at pi ∈ P for every second
the source remains at τj ∈ T , Rs [cGy] be the dose required for the volume associated with
pi ∈ P to be counted towards the dosimetric index for gs ∈ G, Ms [cGy] be the maximum
dose allowed for dose points in gs, and Ls and Us be the lower and upper bounds for the
dosimetric index for gs ∈ G, respectively.

Let the optimization variables be the dwell times, t [seconds], the doses at each dose
point, d [cGy], the dosimetric indices for each organ, v, and the indicator variables, x.

A dwell time, tj ≥ 0, is a continuous variable which denotes the time spent at τj ∈ T .
The total dose received at pi ∈ P is then the sum of the dose contributions from every dwell
position:

di =

|T |∑
j=1

Dijtj

.
The indicator variables, x, are binary variables with the following behavior:

xi =

{
1 if di ≥ Rs

0 otherwise

for every i ∈ Is. This behavior can be enforced by the constraints

Rsxi ≤ di ≤ Rs + (Ms −Rs)xi − ε and xi ∈ {0, 1}
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where ε is a small number. For a given dose at pi, if xi = 1, then the constraints reduce to
Rs ≤ di ≤ Ms − ε, and if xi = 0, they reduce to 0 ≤ di ≤ Rs − ε. If di < Rs, then xi = 0
to satisfy Rsxi ≤ di, and if di ≥ Rs, then xi must be 1 to satisfy di ≤ Rs + (Ms − Rs)xi.
Therefore, xi = 1 if and only if di ≥ Rs, which is the desired behavior.

The ε parameter eliminates the ambiguity for the value of xi when di = Rs. Specifically,
if di equals Rs, then xi should take on value 1 according to its definition. However without
the ε term, 1 or 0 is valid for xi in the context of the given constraints. For very small ε,
di ≤ Rs + (Ms −Rs)xi − ε is an approximation for xi ≤ di < Rs + (Ms −Rs)xi. If this level
of precision is not required, then ε can be omitted from the formulation.

A dosimetric index for an organ, v′s, can be computed as the sum of the voxel volume,
Vi, multiplied by the indicator variable associated with the dose point pi,

v′s =
∑
i∈Is

Vixi.

Since the grid of dose points is evenly spaced, then Vi = V , and

v′s = V
∑
i∈Is

xi.

Finally, dose objectives can be enforced with the constraints

L′s ≤ v′s ≤ U ′s,

where L′s and U ′s are respectively the minimum and maximum volumes for v′s. For com-
pactness, it is useful to drop the V parameter and express v′s, L

′
s, and U ′s as counts rather

volumes. In other words, let

vs =
∑
i∈Is

xi,

and
Ls ≤ vs ≤ Us,

where Ls = dL
′
s

V
e and Us = bU

′
s

V
c.

Since the dosimetric indices are represented exactly using the aforementioned set of inte-
ger programming constraints, the objective can be the maximization or minimization of any
dose objective, i.e. maximizing target covearge or minimize urethra dose. However, maxi-
mizing target coverage, v0, is a natural choice since it represents the most desired therapeutic
effect, which is the eradication of the cancer. We present the IPIP model below.
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maximize v0

subject to: di =

|T |∑
j=1

Dijtj, ∀i,

(IPIP ) Rsxi ≤ di ≤ Rs + (Ms −Rs)xi − ε, ∀i ∈ Is,∀s,

vs =
∑
i∈Is

xi, ∀s,

Ls ≤ vs ≤ Us, ∀s,
and xi ∈ {0, 1}, tj ≥ 0, ∀i, j.

IPIP can be represented more compactly by substituting the equality constraints.

maximize
∑
i∈I0

xi

(IPIP ) subject to: Rsxi ≤
|T |∑
j=1

Dijtj ≤ Rs + (Ms −Rs)xi − ε, ∀i ∈ Is,∀s,

Ls ≤
∑
i∈Is

xi ≤ Us, ∀s,

and xi ∈ {0, 1}, tj ≥ 0, ∀i, j.

Since the constraints of IPIP directly constrain and optimize the volume of organs re-
ceiving a certain dose, IPIP can be used to represent dose objectives such as the one in
Table 2.1. However, our initial tests with IPIP on actual patient data showed that standard
solvers could not reliably find high quality (i.e. near optimal) solutions for a clinically rele-
vant number of dose points. Therefore, in the next section, a fast heuristic is developed for
computing feasible solutions for IPIP.

3.3.2 IPIP Heuristic Formulation

The ability of IPIP to control the dose plan based on dosimetric criteria is dependant on
an accurate count of the number of dose points which contribute to a dosimetric index.
Specifically, it relies on the assumption that xi is either 0 or 1 depending on the dose at pi.
However, when branch and bound solves IPIP, the first step is to take the linear program
relaxation of IPIP, which allows xi to take any value between 0 and 1. When the binary
constraint on xi is relaxed, dosimetric indices are no longer counted correctly.

Recall that some dosimetric indices, specifically the ones for OAR, are upper bound, i.e.
vs ≤ Us. As a consequence, IPIP will attempt to allocate which dose points in gs can have
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di∈Is over Rs as efficiently as possible (i.e. which xi should take value 1) to make the objective
as high as possible. However, the linear programming relaxation does not induce the correct
behavior. For example, let di = 1.5Rs, where pi is in an OAR. Under these conditions xi
should take value 1. In the relaxation, the linear programming optimization will attempt to
be as economical with xi as possible, since it only has a “budget” of Us dose points which
can be above Rs. Specifically, xi can take value

di −Rs
Ms −Rs

+ ε =
0.5Rs

Ms −Rs

+ ε,

which is less than 1, and still satisfy the constraint di ≤ Rs + (Ms − Rs)xi. In fact, if
Ms >> Rs, xi can take on a value very close to 0 when it should be 1, which is not desirable
behavior. Therefore, dosimetric indices which are upper bound are likely to be under-counted
in the LP relaxation of IPIP, making the relaxed dose plans infeasible for the original integer
program. Similarly, dosimetric indices which are lower bound, such as target coverage, are
likely to be over counted.

Our IPIP heuristic (IPIP-H) is a fast method that can generate feasible solutions for
IPIP assuming that (1) target coverage is the only dose objective which is lower bound (i.e.
Ls ≤ vs) and (2) there is no “primary” objective, such as minimizing urethra dose, with
the exception of maximizing target coverage. Note that all OAR dose objectives are upper
bound constraints, i.e. vs ≤ Us, because by definition, an OAR is never required to receive
dose. Given these restrictions on the dose objectives, the fundamental intuition of IPIP-H
is the following. An optimization model is developed which will maximize target coverage
while meeting only the hard dose constraints, i.e. di < Ms. We show that this optimization
model is easy to solve to optimality. However, since dosimetric indices are not constrained
in this model, it is unlikely that the solution of this optimization model will be feasible for
IPIP. Therefore, the infeasible dose distribution is analyzed, and new constraints are that
restrict some of the OAR dose points to receive less than Rs dose. The dose points with the
smallest over-dosing are chosen so that high target coverage can still be achieved. A diagram
of this process is shown in Figure 3.2.

Next, we give a formal description of IPIP-H. First, a relaxation of IPIP is used to gen-
erate a dose plan. This relaxed optimization model is referred to as the heuristic relaxation
(HR). In HR, the constraint xi ∈ {0, 1} is relaxed to allow continuous values of xi. The
restrictions on dosimetric indices, Ls ≤ vs ≤ Us are also relaxed. The result is an LP which
enforces the individual hard dose constraints di ≤ Ms. HR is shown below. Note that
without constraints on dosimetric indices, all x variables for OAR can be dropped.
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Figure 3.2: IPIP-H works by creating a dose distribution which meets hard dose constraints
(left), but ignores soft constraints. Since the objective in IPIP-H is to maximize target
coverage, these dose plans are likely to overdose OAR. To address this problem, IPIP-H
cools the dose plan starting from the smallest overdosed volume on the periphery (middle)
until it meets the dose constraints for OAR (right).

maximize
∑
i∈I0

xi

subject to: di =

|T |∑
j=1

Dijtj ∀i

(HR) R0xi ≤ di ∀i ∈ I0,
di ≤Ms − ε, ∀s 6= 0,∀i ∈ Is,

and 0 ≤ xi ≤ 1, ∀i ∈ I0,
tj ≥ 0, ∀j.

As with any relaxation, there is some loss of fidelity between the original model and
the relaxation. This paragraph describes this loss. Since HR does not constrain dosimetric
indices, dose objectives for the OAR are unlikely to be met in dose plans generated from
HR. HR will attempt to meet the target coverage constraint, v0 ≥ Ls, but only through its
maximization in the objective function. However, it is extremely important to note that the
target coverage represented in HR is not true target coverage since the x variables which were
once binary are now continuous. As a consequence, target coverage is not counted correctly.
For instance, if pi receives 0.75Rx, then xi can have value 0.75 and still be valid for Rsxi ≤ di,
even though the value for xi should be 0. This can have poor performance if, for instance,
every prostate dose point received .99Rx, in which HR would report 99% coverage when the
real target coverage is 0%. However, our computational results for standard dose objectives
show that HR still performs well, despite this possible pathology. The advantage of HR over
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IPIP is that it is a linear program, which has desirable performance guarantees over integer
programming as mentioned in Chapter 2.

Let d
HR

s be the vector of doses for dose points in organ s for the dose plan computed from

HR. By construction, d
HR

s will meet hard dose constraints specified in IPIP. Also, it is likely
that target coverage will be high since it is maximized in the objective, and improving target
coverage in the optimization is unincumbered by restrictions on dosimetric indices for OAR.
However, it does not necessarily meet constraints on dosimetric indices specified for IPIP
because they were relaxed. Specifically, more than Us dose points will receive more than Rs

dose in each organ. To make the solution feasible for IPIP, constraints must be added to
|Is| − Us dose points of the form di ≤ Rs − ε. In other words, only Us dose points in organ
s may have a dose upper bound of Ms; the remaining dose points must have a dose upper
bound of Rs.

The selection of the dose points should have their dose upper bound reduced to Rs should
be done in such a way as to still produce high target coverage. For IPIP-H, every dose point
not among the hottest (i.e. most dose points) Us dose points are constrained to receive less
than Rs dose. The reason this method of selection was chosen is as follows. Without the
dose restrictions to OAR, an HR dose plan will likely be too hot. Specifically, too many
dose points in OAR will be receiving more than Rs dose. Therefore, the dose to some of the
dose points must be reduced to make it feasible for IPIP. Our heuristic assumes that adding
constraints that reduce the dose to the dose points receiving the least dose will have the least
impact on target coverage in the HR dose plan. In other words, the HR dose plans is cooled
as little as possible to make it feasible for IPIP. In this way, high coverage is retained.

HR is then solved with the new constraints. Since only Us dose points in each organ have
a dose upper bound of Ms, upper bound dose objectives for IPIP are guaranteed to be met
in augmented HR. Thus, the solution for the augmented HR is guaranteed to be feasible
for IPIP, except for target coverage, which is maximized in the objective. Our IPIP-H is
summarized as follows.
(1) Solve HR and store dwell times.
(2) Using the dwell times from HR, for each organ except the CTV, let Ps∗ denote the Us
dose points receiving the most dose in that organ.

(3) For every p ∈ Ps∗ add the constraint

|T |∑
j=1

Dijtj ≤ Rs − ε to HR.

(4) Re-solve augmented HR to get dose plan.
We mention here that steps (1) and (4) are linear programs and step (2) involves sorting

(which is also polynomial time). Therefore, IPIP-H is polynomial time.

3.3.3 Patient Data Sets

In Siauw et al., 2011 [102], 20 prostate cancer patient data sets from patients previously
treated at the UCSF clinic were used to evaluate IPIP-H. In this study, a different group
of 18 anonymized patients were used. These patients were chosen to have a wide range
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of prostate volumes ranging from 23 to 82 cm3. The physician used a freehand technique
to implant 16 catheters into the prostate under transrectal ultrasound guidance. Plastic
catheters were inserted transperineally by following the tip of the catheter from the apex of
the prostate to the base of the prostate using ultrasound and a stepper. A Foley catheter
was inserted to visualize the urethra.

Three-millimeter-thick CT slices were collected using a spiral CT. The implanted catheters,
target (prostate), and the organs at risk (OAR) were contoured using Oncentra 3.2. The
OAR included the rectum, bladder, urethra, and critical structures near the bulb. No mar-
gins were added. The structures near the penile bulb were contoured as a single organ.
When segmenting the bladder and rectum, the outermost mucosa surface was contoured.
The urethra was defined by the outer surface of the Foley catheter, and only the urethral
volume within the prostate was contoured. Only dwell positions within the prostate were
used during dose planning.

Contour slices with more than 15 points were reduced to 15 points. Reducing the number
of contour points is a common feature in many dose planning systems. A visual inspection
was made to ensure that the organ features were preserved. This reduction improved com-
putational performance generating dose points, which were created on a uniform grid of
points spaced 2 mm in the x- and y-direction, and 3 mm in the z-direction for every region
of interest except the space the between organs, which had dose points spaced 4 mm in the
x- and y-direction, and 3 mm in the z-direction.

It is worth noting that the needle implants for these patients were implanted by an expert
physician (or under the direct supervision of one). Since the set of possible dose plans is
governed by the needle implant (i.e. the dwell positions), it is easier to find high quality dose
plans when the needle implant is well done. Specifically, if the needles are evenly spaced
throughout the prostate volume. Conversely if the needle implant is poor, i.e. has too few
needles or badly placed needles that leave large voids in the prostate volume that do not
have needles nearby, then dose planning will be much harder, if not impossible.

3.3.4 Dose Rate Calculations and Dose Objectives

When using the point-source calculation specified in the AAPM TG-43 dosimetry protocol
[83], the dose-rate contribution [cGy/sec] to a dose point from a source dwell position is
only a function of the distance between them and the radioactive properties of the material,
which was 192Ir. The dose rate between pi ∈ P and τj ∈ T , is calculated according to

Dij =
γ1γ2γ3γ4
3600D2

(g0 + g1D + g2D
2 + g3D

3 + g4D
4 + g5D

5)

where γ1 is the air kerma factor, γ2 is the source activity, γ3 is the dose rate constant, γ4
is the anisotropy factor, and g0 + g1D + g2D

2 + g3D
3 + g4D

4 + g5D
5 is an approximation

of the radial dose function in terms of the distance D = max(‖pi − τj‖, 2mm). The reason
the distance between the points is truncated at 2 mm is to keep the dose rate function
from blowing up at small distances. The parameters g0, g1, g2, g3, g4, g5 are source-specific
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Parameter Name Value

γ1 Air kerma factor 4.03
γ2 Activity 8000
γ3 Dose rate constant 1.12
γ4 Anisotropy 0.98
g0 - 0.989054
g1 - 0.0081319
g2 - 0.0035177
g3 - -0.00146637
g4 - 0.000092437
g5 - 0

Table 3.2: Dose rate parameters. Need to find units of values

Figure 3.3: Dose rate vs. distance approximation used for 192Ir.

parameters found from least squares regression. The 1
D2 term is called the geometry factor

and the 1
3600

converts the dose rate units from cGy/hr to cGy/sec. Table 3.2 shows the
relevant values used for this study. Figure 3.3 shows the dose-rate vs. distance curve using
these values.

The prescription dose used in this study was 950 cGy, and the dosimetric criteria used in
this study can be found in Table 3.3. The specifications for the VProstate

100 , VUrethra
125 , VRectum

75 ,
and VBladder

75 are defined by RTOG-0321 [46]. RTOG specifies that the VUrethra
125 be much less

than 1 cm3. We interpreted this to mean less than 0.1 cm3. The VProstate
150 is not explicitly

constrained by the RTOG-0321 protocol. The VProstate
150 is restricted by the homogeneity
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Index Requirement

VProstate
100 ≥ 90%

VProstate
150 ≤ 45%

VUrethra
125 ≤ 0.1 cm3

VUrethra
150 = 0 cm3

VRectum
75 ≤ 1 cm3

VRectum
100 0 cm3

VBladder
75 ≤ 1 cm3

VBladder
100 = 0 cm3

VBody
200 = 0 cm3

Table 3.3: IPIP dosimetric criteria

index (HI), where:

HI =
VProstate

100 − VProstate
150

VProstate
100

.

It is generally preferred that HI ≥ 0.6. However, lower values of HI are acceptable if they
allow for higher CTV coverage. For this study, we constrain HI to be greater than 50% to
maintain some control over the VProstate

150 while not being overly restrictive. Since we expect
target coverage over 90%, this restriction on HI can be enforced with VProstate

150 ≤ 45%.
The restrictions that the VUrethra

150 , VRectum
100 , VBladder

100 , and VBody
200 be equal to 0 are not

specified by RTOG but are considered preferable when possible at our clinic. The preference
of the VBody

200 comes from the desire to keep hot spots localized within the CTV. We also
added the restriction that VBulb

75 must be less than 1 cm3, and that VBulb
100 be 0 cm3. These

restrictions are not standard but were added to give some control over the dose to the bulb.
The parameters used for IPIP to reflect these dosimetric criteria can be found in Table

3.4. The values of 8 and 83 for Us represent the number of dose points in 0.1 cm3 and 1.0
cm3, respectively, based on our grid spacing, which was 2mm in the x- and y-direction and 3
mm in the z-direction. The value of Us for the VProstate

150 is 45% of the number of dose points
in the prostate. The dose to prostate dose points should be unrestricted so we have used an
unrestrictively high number of 20000 cGy. We did this to avoid using infinity, which creates
numerical problems with our optimization solver. The dosimetry in our results show no dose
points received this dose level for any patient.

It is important to note that since target coverage is being maximized in the objective
function, we do not explicitly enforce the constraint that target coverage be higher than 90%
of the prostate volume. Relaxing this restriction (but still checking for it later), has one
major advantage: if it is physically impossible to meet dose objectives, it allows IPIP and
IPIP-H to return a solution with target coverage less than 90% rather than return infeasible.
If the model just returns infeasible, then it is difficult to determine which objective caused
the infeasibility (i.e. which objective is the most restrictive) and it does not allow one to
determine how close the dose objectives are to being achievable. For instance, if 90% coverage
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Organ s Rs Ms Us

Prostate 0 950 20000 N0

Prostate 1 1425 20000 .45 N0

Urethra 2 1140 1425 8
Rectum 3 712 950 83
Bladder 4 712 950 83
Body 5 1900 1900 0

Table 3.4: IPIP experimental parameters

is impossible in the context of the other dose objectives, but 89% is possible, then the implant
is almost able to meet the dose objectives, which is a useful fact to know. Conversely, if
only 70% coverage is possible, then the implant is not close to meeting the dose objectives.
Although meeting standard dose objectives from a well-placed implant is likely to be possible,
knowing how close an implant is to meeting dose objectives is an important component of
evaluating a needle configuration during needle planning, which is the topic of the next
chapter.

3.3.5 Method Evaluation

We attempted to compute dose plans for each patient in our data set using using (1) IPIP,
(2) the linear program relaxation of IPIP, IPIP-R, (3) IPIP-H, and (4) Inverse Planning
Simulated Annealing (IPSA), a clinically deployed dose planning system used worldwide.
We used a Lenova ThinkPad with an Intel i5-2410M processor and 4GB of RAM, and the
Windows 7 64-bit operating system, to perform all calculations. Matlab R2011a (Mathworks
Inc.) was used to perform all dose point, dose rate, and dosimetric index calculations. All
linear and integer programming calculations were done using the Matlab interface for CPLEX
12.4 [21], an industrial standard for solving large scale linear and integer programs.

When optimizing the dose distribution using IPIP, CPLEX was set to terminate in 30
minutes of running time if an optimal solution was not found yet. If an optimal solution was
not found, the solution with the best objective function value was returned. Since target
coverage was not explicitly restricted in any of the optimization models, the zero solution,
i.e. the dose plan where all dwell times are zero seconds, was always feasible and found at
the root node. Therefore, a contingency for the case where a feasible solution was not found
in 30 minutes was not required. Except for the runtime limitation, all CPLEX parameters
were left at their default settings.

We recorded the values of the dosimetric indices which were controlled in IPIP and their
compliance with the specified dose objectives. For IPIP-H, the difference between relaxed
coverage and real coverage was recorded. The optimization time and optimality gap was
recorded.

We compared the performance of IPIP-H with the linear program formulation by Al-
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terovitz et al, 2006 [2] of the IPSA model. Comparison was made in terms of compliance
with dose objectives and runtime. Since IPSA has been clinically validated for over a decade,
it serves as a good baseline for performance standards. Each instance of IPSA was run only
once for each patient. There was no manual fine tuning of optimization parameters if dose
objectives were not met. However, this would be done in practice when treating patients.
The penalty weights used were the standard class solution found in Lessard et al, 2004 [67].

3.4 Results

CPLEX found a non-zero feasible solution for 12/18 patient cases. Of these, only 8/12 had
target coverage over 90% and only 2/12 non-zero solutions were optimal. Generally, the
upper bound was close to 100% at the root and was not improved much during branch and
bound. At termination, the 12 non-zero solutions had a minimum upper bound of 97%.

Dose plans computed from IPIP-R met target coverage for every patient case with a
mean target coverage of 99%. However, it did not meet all the OAR constraints for any of
the patient cases. This makes intuitive sense since IPIP-R only seeks to maximize target
coverage, and counts OAR dosimetric indices inaccurately to its advantage, as described
earlier in the second paragraph of Section 3.3.2. Since IPIP-R is a linear program, CPLEX
could solve it fairly quickly - between 6 and 40 seconds.

For each patient, IPIP-H found a dose plan which satisfied all the dose objectives, in-
cluding the target coverage requirement. This confirms the results for the 20 patient cases
from Siauw et al. 2011. The run time ranged from 3 to 27 seconds with an average of 13
seconds. This was faster than the times recorded for IPIP-H in Siauw et al, 2011, most likely
due to the substitution of Mosek [3], the optimization software used for the previous study,
with CPLEX. The average target coverage was 97%. The average difference between the
true target coverage and the relaxed target coverage used by IPIP-H was 3%.

IPIP-H found a higher quality solution than IPIP running for 30 minutes (i.e. higher
target coverage within OAR dose constraints) in 13/18 cases. The absolute difference in
target coverage between the IPIP-H solution and the upper bound found in IPIP after 30
minutes of running time was between 1 and 5% target coverage. Thus, IPIP-H was always
within 5% of the optimal solution for IPIP. It is worth noting that using IPIP-H to find an
initial feasible solution for branch and bound, combined with a custom method of reducing
the upper bound, is a promising paradigm for quickly finding lower bound solutions for IPIP.

IPSA did not find a solution which met all the dose objectives on the first iteration for
any of the trials. However, if the constraint on the VBody

200 was ignored, then 9/18 out of the
patients would have been compliant. The average run time for IPSA was 4 seconds. However,
half of the cases would have needed at least one re-optimization to meet dose objectives.

The median dosimetric indices over the patient data set for each of the algorithms is
presented in Table 3.5. The median doses to the penile bulb and body were omitted because
they were zero for every algorithm. The table shows that the median dose to each of the
organs was approximately the same when comparing IPIP-H and IPSA. However, since IPIP-
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Alg. VProstate
100 VProstate

150 VBladder
75 VRectum

75 VUrethra
125

IPIP 91 26 0.3 0.1 0.0
IPIP-R 99 44 1.4 1.3 0.4
IPIP-H 97 36 0.8 0.7 0.1

IPSA 98 29 0.8 0.6 0.1

Table 3.5: Median dose to organs for IPIP, IPIP-R, IPIP-H, and IPSA.

H always complied with the dose objectives, it seems that IPIP-H allocated dose better than
IPSA. As expected IPIP-R had the hottest plans with the highest VProstate

100 and VProstate
150 .

The median dose to the bladder, rectum, and urethra were all above their respective limits.
A table of the dosimetric results for each patient can be found in Appendix A.1. A prostate,
urethra, bladder, and rectum DVH is shown for each patient in Appendix A.2 for future
reference.

3.5 Discussion

It is clear that solving IPIP is not a reliable method of dose planning. Allotting 30 minutes
of planning time would be a severe interruption to the workflow (generally clinicians want a
solution within one minute), and even then may not return a satisfactory dose plan. Although
IPIP-R can be solved quickly, it does not comply with the specified objectives. IPIP-H, which
is based on linear programming, is fast and can meet standard dose objectives. Therefore,
it is a promising tool for clinical use. However, it also has several limitations which are
discussed next.

Since every dose objective can be represented as a constraint in IPIP, the objective
function is free to be interchanged with other objectives which the user may choose to induce
a desired behavior. For example, some patients are successfully treated for prostate cancer,
but later the cancer returns. In such cases, referred to as recurrences cases, the urethra
requires additional protection, and it would be useful to minimize the VUrethra

125 , subject to a
minimum coverage constraint. It may also be interesting to minimize the total treatment
time. Both these objectives, and others, can be represented in IPIP. However, there are
two reasons why the objective function cannot be interchanged in IPIP-H. First, and most
obviously, IPIP-H requires the use of the objective function to meet target coverage. Second,
maximizing target coverage is a fundamental mechanism that allows IPIP-H to perform well.
Specifically, it relies on the fact that the first iteration of HR will produce a solution which is
too hot, which may not be the case if another dosimetric index is optimized in the objective.
Therefore, IPIP-H can only find high quality solutions for IPIP when target coverage is
maximized, and no other dosimetric index is lower bound. Other objectives will not work.

Another limitation of IPIP, IPIP-H, and dose planning based on dosimetric indices in
general is that they will tend to utilize all the dose allowance to OAR, even for small im-
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provements to the objective. For example, a dose plan with target coverage of 99% and
VBladder

75 = 1 cc will be chosen over a dose plan with 98% coverage and VBladder
75 = 0 cc. To

catch this case, the user would have to input the constraint VBladder
75 ≤ 0.5 cc and check if

the problem was feasible. If it is feasible, then VBladder
75 ≤ 0.25 cc could be checked and so

on. Thus, directly optimizing according to dose-volume constraint is still, in a way, iter-
ative. However, the iterations are done through dose volume constraints, which all users
would be familiar with and have intuitive meaning, rather than system-specific optimization
parameters.

Finally, IPIP-H can fail to find a solution which meets target coverage, even when one
exists. Specifically, IPIP-H creates constraints which cool the first iteration of HR enough
such that OAR sparing constraints are met. However, this cooling effect is heuristic and
not necessarily optimal. Thus, it may add constraints in a way that cool the solution
too much (i.e. not meeting target coverage) even when it is physically possible given the
arrangement of dwell positions. At least with the standard objectives, with a well placed
needle configuration, it seems that this case is unlikely.

The quality of possible dose plans is governed by the quality of the needle implant because
dose plans are produced from the dwell positions in the needle implant. If there are dwell
positions evenly spaced throughout the prostate volume, then dose planning is likely to be
much easier, and dose plans of high quality are likely to exist and be easily found. If there
are a regions of the prostate that do not have any needles nearby, then it may be difficult
or impossible to cover that volume with the prescription dose within the limits to OAR
dose. The implants used in this experiment were executed by Dr. I-Chow Hsu, a radiation
oncologist with a specialization in brachytherapy and an expert in freehand needle insertion.
A study should be done to determine the effectiveness of IPIP-H on needle configurations
which have been placed by a less experienced physician.

This brings to the foreground the most important point of this chapter: the use of IPIP-
H as an evaluation tool for needle configurations. In the patient cases used in this study,
and in general practice which uses 16-18 needles, most needle configurations are likely to
be satisfactory relative to standard dose objectives because the standard dose objectives are
designed to be achievable in the vast majority of cases using the standard clinical workflow.
However, the fewest number of needles required to meet dose objectives, and where these
needles should be placed are still open questions. To answer these questions, an evaluation
tool is necessary for the quality of needle configurations. Towards this goal, let a needle
configuration be called satisfactory relative to a set of dose objectives if it can meet those
dose objectives, and unsatisfactory otherwise. IPIP-H is an ideal tool for this purpose because
it is (1) fast, (2) guaranteed to meet OAR objectives, and (3) can fail only in meeting target
coverage. Specifically, if IPIP-H can find a dose plan which meets target coverage, then
the needle configuration is satisfactory since all other dose constraints are guaranteed to be
met. If not, then the target coverage is a measure of how close the needle configuration
is to being satisfactory. For example, if target coverage is close to 90%, then the needle
configuration is almost satisfactory. This kind of evaluation for needle configurations is not
possible with multi-objective dose planning methods because they can fail in any of the dose
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criteria, and the inability to find a dose plan which meets dose criteria, even after many
iterations of parameter tuning, does not guarantee that one does not exist. This will become
especially problematic when evaluating needle configurations which are on the borderline
between being unsatisfactory and satisfactory. The use of IPIP-H as an evaluation tool for
needle configurations is an important component of the next chapter on Needle Planning.

3.6 Conclusion

We developed Inverse Planning by Integer Program, IPIP, an integer program that directly
optimizes dosimetric indices. We showed that CPLEX, using the standard branch and bound
parameters, could not reliably compute solutions for IPIP within 30 minutes. Assuming that
maximizing target coverage is the objective function and that target coverage is the only lower
bound constraint in the set of dose objectives, we developed a linear programming heuristic
called IPIP-H which is fast and produces high quality (i.e. near optimal) feasible solutions
using the RTOG-0321 standard dose objectives and needle configurations implanted by an
expert. We showed that IPIP-H could outperform IPSA in terms of meeting dose objectives.

Since IPIP-H is fast, always produces a solution, meets OAR objectives, and can only
fail in meeting target coverage, we use it as an evaluation tool for needle implants in our
work on needle planning. This work is presented in the following chapter.
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Chapter 4

Skew-Line Needle Planning using
NPIP

4.1 Overview

There are many desirable properties for a needle configuration. The number of needles, num-
ber of collisions with organs such as the penile bulb, the difficulty of implantation, and the
robustness to placement uncertainties are a few important factors. The most important prop-
erty is that the needle plan should support a dose plan which meets the dose objectives set by
the physician. However, optimizing both the dose distribution and the needle configuration
simultaneously has been shown to be difficult to optimize using integer programming [52],
even when choosing from a relatively few number of needle position choices (i.e. ≈100) and
optimizing the dose distribution using dose penalties, which does not guarantee compliance
with dose objectives.

This chapter expands on work presented in Siauw et al, 2012 [103], which developed Nee-
dle Planning by Integer Program (NPIP). NPIP is an optimization algorithm for computing
patient-specific, feasible, needle configurations for HDR brachytherapy. NPIP uses a novel
spatial coverage approach to compute a needle configuration such that the entire prostate
volume is some distance, δ, from at least one needle in the configuration. Here δ is a user-
specified parameter. We show that solving this spatial coverage problem can be represented
as a set cover integer program.

For this study, we represented needle configurations as arrangements of skew lines (non-
intersecting, non-parallel lines) rather than the parallel set enforced by rigid templates. NPIP
is guaranteed to compute a needle configuration which does not penetrate any OAR and does
not contain needles which intersect each other. We had NPIP choose a needle configuration
from a candidate set of over 2500 needles, which is much larger than that used by Karabis et
al, 2009, [52]. We showed that given the correct parameter, δ, NPIP could compute needle
configurations which met dose objectives and used fewer needles than the standard number
used by physicians, which is 16. We also present a sensitivity analysis which showed that
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NPIP-generated needle configurations are robust to placement disturbances on the order of
those expected by current robotic needle insertion devices. Limitations and future work are
discussed.

4.2 Background

There has been some work in optimizing needle configurations (needle planning) for HDR
brachytherapy [52]. In Karabis et al, 2009 [52], needles were chosen for insertion from a
virtual set of candidate needles computed from the standard HDR template. This candidate
needle set has on the order of 100 needles. An integer programming model was formulated
which would simultaneous optimize the needle configuration and the dose distribution. For
this study, the dose distribution was optimized using penalty weights, which does not nec-
essarily comply with dose objectives. However, standard branch and bound could only find
a feasible, but suboptimal, solution in one out of the three cases, even given 36 hours of
running time.

Although our methodology also uses a candidate needle set, the set of needles considered
for this study include skew-line needles at a much finer discretization of insertion points.
Thus our method must handle a candidate needle set which is much larger than considered
before. Also, since our candidate needle set includes non-parallel options, our method must
be able to ensure that the chosen needle configuration does not contain needles which come
within a needle-diameter’s distance from each other (i.e. collide).

One solution to the computational difficulty of simultaneously optimizing the needle
configuration and dose distribution is to break the problem into a sequence of problems:
needle planning, then dose planning. This allows us to deal with two simpler problems and
to take advantage of our previous work in dose planning using IPIP. However, placing needles
without utilizing any knowledge of dose planning requires some approximation as to what
constitutes a valid needle configuration. Our work uses a novel spatial coverage model to
ensure that the entire prostate volume is near to at least one dwell position in the final needle
configuration. The assumption is that volume near dwell positions has the opportunity to
receive enough dose, which is the primary therapeutic objective of treatment. Clearly what
constitutes “close enough” is debatable and is controlled by a user parameter. The focus of
this study is on the selection of this parameter and its effect on the final needle configuration.

The main application of needle planning for this dissertation is robot-assisted needle
insertion. Needle planning makes it possible to compute a needle configuration without
the biases and limitations of a physician, e.g. clinical experience and placement precision,
respectively. We elaborate on these ideas further in the Discussion section.
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Term Description

E Entry zone vertices
E Convex hull of E
C Set of target contour points
T Set of projected points above target
T Convex hull of T
N Set of candidate needle
N Chosen set of needles to be inserted
P Coordinate of pi ∈ P
dj Coordinate of jth dwell position
δ Needle coverage radius
xk Binary variable for nk ∈ N
X Set of pairs (k, `) s.t. nk, n` ∈ N collide
Ki(δ) Set of needles that cover pi given δ
I(δ) Set of points that can be covered by N given δ

Table 4.1: NPIP terms

4.3 Method and Materials

4.3.1 System Formulation

In this section, a system for computing skew-line needle configurations is described. The
system consists of a candidate needle generation component, a needle selection component,
and a dose planning component. The candidate needle set is a large, virtual set of needles
that is representative of the needles that are feasible for insertion. The needle selection
component chooses a small subset of the candidate needles for insertion. The needle selection
component should choose the needles in such a way as to be able to meet dose objectives
during dose planning and such that the chosen needles do not intersect. The dose planning
component is used to verify that the chosen needle configuration can meet dose objectives.
Since integer programming is a central component of this system, we name it Needle Planning
by Integer Program (NPIP). The components of NPIP are described in the following section.
For reference, the notation used is given in Table 4.1.

4.3.1.1 Candidate Needle Set Generation

The candidate needle set generation component assumes it is possible for the user to define
an entry zone where needles can be inserted into the body. In practice, this entry zone would
be on the perineum and its size and shape would be governed by the desire to avoid hitting
hard obstacles such as the pubic arch. Defining the entry zone in practice presents some
challenges which are discussed in Section 4.5.
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Let Ω denote the set of possible needles modeled by line segments which are (1) are
straight, (2) originate inside the entry zone, (3) have some length within the prostate volume,
and (4) do not have any length within a healthy organ volume. The candidate needle set
generation component attempts to create a representative subset of Ω. We have explored
two methods of generating candidate needle sets. The first is a naive method based on
a manually generated needle configuration presented in Cunha et al, 2009 [23] which was
designed to avoid the penile bulb. This method is computationally and geometrically simple
and so convenient to generate, but does not represent Ω well. The second method generates
a more representative set, but is more computationally demanding and can generate many
false positives during one of the steps (i.e. generates needles which later turn out not to be
in Ω). These two methods are described next. Eventually, we would like a full mathematical
representation of Ω, either analytically or up to some entry point and angulation precision.
We leave this to future work. The advantages of such a method are discussed.

4.3.1.1.1 Method 1: This method has a rigid method of defining the entry zone, which
is not based on the anatomy of the patient. Specifically, let the entry zone be defined by a
square some distance below the most inferior slice of the prostate (presumably also below
the penile bulb), centered at the x-y center of mass of the prostate. Let the size of the
square and the distance below the prostate be defined by two user parameters, α and β,
respectively.

A candidate needle set is generated for this entry zone by taking the union of five needle
sets: a parallel set and four conical sets. The parallel needle set consists of evenly spaced
needles going exactly in the z-positive direction (from the perineum towards the head). The
spacing of needles in the x- and y-direction is defined by another user defined parameter,
ρ. Each needle begins at the entry zone and ends at the most superior slice of the prostate
directly superior to the entry point. Every needle within one conical set share the same
entry point at one of the corners of entry zone. Each needle begins at the entry point and
ends at a point on a α × α square at the most superior slices of the prostate, centered at
the x-y centroid of the prostate, and gridded with ρ spacing in the x- and y-direction. The
conical set was inspired by the conical needle configuration from Cunha et. al, 2009, which
was designed to have the majority of needles avoid the penile bulb. An example candidate
needle set generated from this method is shown in Figure 4.1.

The candidate needle set is then truncated by removing all needles that intersected an
organ at risk before they intersect the prostate. Needles that do not intersect the prostate
(i.e. have no dwell positions within the prostate) are also excluded. Needles that intersect
the prostate before intersecting an organ at risk are truncated at the last dwell position
within the prostate. A needle is assumed to intersect an organ if, at any contour slice of that
organ, the interpolated x-y position of that needle is contained in the slice.

This method of generating candidate needles has several limitations. First, it only cap-
tures a very small subset of Ω and is not nearly representative. Second, the method is highly
parametric, with no real intuition as to how the parameters should be chosen. Finally, the
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Figure 4.1: Method 1 of generating candidate needle sets used the union of a parallel needle
set (left) and non-parallel needle set (right).

gridding induces artifacts in the candidate needle set which may harm the performance of
the overall algorithm. For example, many needles in the conical set have the same origin,
which is undesirable because it could cause collision problems when inserting the needle
configuration.

4.3.1.1.2 Method 2: This method describes a more principled approach to generating
the candidate needle set. In particular, we reduce the number of user-parameters, and use
random sampling to avoid artifacts that may be caused by gridding.

Let z∗ be the z-coordinate of the most superior slice of the target. Let E be the set
of vertices of the entry zone, E be the set of points in the convex hull of E, and C be the
set of contour points of the target. The candidate needle set is generated according to the

anatomy of the patient in four steps. (1) Compute T = {tij : tij = ei+
(
z∗−ezi
czj−ezi

)
(cj−ei),∀i ∈

E,∀j ∈ C}. Here, ezi and czj are the z-components of ei and cj respectively, and tij is the
intersection of the line going through ei and cj with a plane perpendicular to the z-axis
at z∗. (2) Compute T , the convex hull of T . (3) Generate a large number of needles by
uniformly sampling a point in E and in T and creating a line between them. Each line
represents a single needle. Sampling inside a convex polygon is discussed below. (4) Remove
needles that do not intersect the target, remove needles that intersect a healthy structure
before intersecting the target, and truncate needles that intersect a healthy structure after
the prostate at a point before the intersection. Figure 4.2 shows a diagram of the terms used
for generating candidate needle sets.

Uniform random sampling inside a convex polygon is described in Devroye [27]. First,
the convex polygon is subdivided into triangles (i.e. a triangle mesh). Then, a triangle in
the mesh is randomly selected with probability proportional to its area. Finally, a point is
chosen from a uniform distribution inside the triangle.
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Figure 4.2: A set of candidate needles was generated according to the anatomy of the patient.
Given the vertices of an entry zone, E, and the contour points of the prostate, C, a set of
points was computed, T , such that tij ∈ T was the intersection of the line containing ei ∈ E
and cj ∈ C with a plane perpendicular to the z-axis at the most superior slice of the target.
The convex hull of T was called T . A needle was generated by randomly sampling a point
in E , the convex hull of E, and in T , and generating a line connecting them. Needles that
intersected a healthy structure were removed.

Figure 4.3: False Positive Example for Method 2 for candidate needle set generation.

This method has one parameter, the initial number of needles, and with enough needles,
represents Ω much better than Method 1. However, there are still some limitations of this
method worth mentioning. For instance, the T region may be very large if entry zone is
fat and close to the target. Consider the two dimensional case shown in Figure 4.3. In this
case, there are many possible needles which originate at the entry zone and end in T but
do not intersect the prostate, i.e. many false positives. As a consequence, a huge number
of initial needles would need to be generated to ensure that the needles that survive the
rejection process still adequately represent Ω. Additionally, this method may also create
many needles which are highly angled, which although possible, may be more difficult to
implant than needles which have a majority z-direction.

As in Method 1, needles which do not intersect the prostate or intersect an OAR are
removed from the candidate needle set. Needles which intersect the prostate then an OAR are
truncated at the last dwell position before the OAR intersection. All needles were truncated
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Figure 4.4: Given an anatomy data set and an entry zone for needle insertion, Method 2
generates many randomly sampled needles according to the process described in Figure 4.2,
then eliminates needles which intersect an OAR or do not intersect the prostate. Needles
are truncated at the last dwell position in the prostate or the last dwell position before an
intersection with OAR.

at the last dwell position within the prostate. A diagram of the Method 2 candidate needle
set generation scheme is shown in Figure 4.4.

4.3.1.2 Needle Selection

Let the candidate needle set be denoted by N , and let nk ∈ N be a needle defined by the
set of dwell positions that belong to it. The goal of the needle selection component is to find
an N ⊂ N that (1) meets dose objectives, (2) is collision free, and (3) uses as few needles
as possible. However, meeting dose objectives is a complicated constraint to enforce, and
therefore, our needle selection component only requires that N have good spatial coverage
of the target. Some mathematical formalism to these criteria is given and it is shown that
needle selection with these properties can be formulated as a set cover integer program.

First the spatial coverage of needles is formalized. Assume that the target volume has
been discretized into a grid of evenly spaced points, P . Usually, a point pi ∈ P is referred to
as a “dose points” or “dose control points” because it is used to evaluate the dose delivered
to an organ voxel. However for this study the points are referred to as “cover points” to
distinguish them from points used to control the dose distribution during dose planning.
For a user-specified parameter, δ > 0, nk covers pi if there exists a dj ∈ nk such that
||pi− dj|| < δ, where dj is a dwell position in nk. Since δ defines the region that needles can
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cover, it is referred to as the needle coverage radius.
To achieve good spatial coverage of the target, it is desired that every point be covered

by at least one needle in N . However, some points may not be coverable by any needle
in N , making this criterion impossible since N ⊂ N . Instead, let I(δ) be the indices
for the points which are coverable by at least one needle in the candidate set given δ:
I(δ) = {i : ∃nk ∈ N that covers pi given δ}, and N is said to give good spatial coverage of
the target if there is a needle in N which covers every point in I(δ). Clearly for this criterion
to be reasonable, I(δ) must contain the vast majority of points in P . Our experiments
showed that in almost every case, every point in P was indexed in I(δ), and in cases which
this was not true, I(δ) contained at least 98% of the points in P .

To avoid needle collisions, constraints on the selection process are added that restrict only
one needle in a colliding pair to be chosen. Formally, let Lk be the line segment between
the entry point and the most superior dwell position of nk, and let nk and n` collide if the
minimum distance between Lk and L` is less than the diameter of a needle, γ. Define X to
be the set of colliding pairs, (k, `), between all the needles in N . If N is selected such that
for every (k, `) ∈ X, only nk or n` (but not both) can be chosen, then N is guaranteed to
be collision free.

Minimizing the size of N subject to the coverage constraints defined by δ and the collision
constraints defined by γ can be formulated as a BIP. Let xk be an indicator variable for nk
with the following behavior:

xk =

{
1 if nk is chosen to be in the configuration,
0 otherwise,

and let the parameter
Ki(δ) = {k : nk covers pi given δ}

be the set of needles that cover pi given δ. Then needle selection, N(P ,N ,δ), is the following
integer program.

minimize
∑
k

xk

N(P ,N ,δ) subject to:
∑

k∈Ki(δ)

xk ≥ 1, ∀i ∈ I(δ), (4.1)

xk + x` ≤ 1 ∀(k, `) ∈ X, (4.2)

and xk ∈ {0, 1}, ∀k. (4.3)

The objective function ensures that the fewest number of needles are chosen. Constraint
1 ensures that every point that can be covered is covered by at least one needle and makes
N(P ,N ,δ) a set cover integer program, constraint 2 ensures that only one needle in a colliding
pair is chosen, and constraint 3 enforces the binary requirement on the definition of xk.
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Figure 4.5: Test case where coverage and collision-free requirement cannot both be met, even
if every point can be covered by at least one needle in the candidate needle set. Here, n1

can cover p1 and n2 can cover p2. However, since they are less than γ apart, only one needle
can be chosen. Thus, the problem is infeasible.

Note that it is still possible for N(P ,N ,δ) to be infeasible, even if only the points in
I(δ) are used for the coverage requirement, because it may be impossible to meet both the
coverage and collision free requirement. A small test case in which this occurs is depicted in
Figure 4.5. Future work may be able to identify points that cannot be covered because of
this restriction and exclude them from I(δ).

4.3.1.3 Dose Planning

The primary objective of a needle configuration is to meet dose objectives. However, NPIP
relaxes this requirement through a spatial coverage approximation defined by δ. Therefore,
it is possible to choose δ such that dose objectives cannot be met by N . For example, δ can
be chosen large enough such that |N | = 1, and a needle configuration with one needle will
not meet reasonable dose objectives. Therefore, a dose planning tool is required to verify
that N meets dose objectives.

Inverse Planning by Integer Program (IPIP) [102] was chosen as the dose planning tool
for this system because it is guaranteed to meet all healthy-tissue sparing constraints while
making target coverage as high as possible. These properties of IPIP allow needle config-
urations to be evaluated by a single metric, target coverage, without the need to interpret
the relative value of competing dose objectives. Specifically, if IPIP produces a dose plan for
a needle configuration that meets the target coverage requirement, then the needle configu-
ration meets all dose objectives, and the needle configuration can be declared satisfactory.
Otherwise, it is unsatisfactory.
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4.3.2 Patient Data Sets

The same patient data sets used for the previous study were used for this study. A model of
the entry zone was not available for this experiment because contouring it is not standard for
HDR brachytherapy. Since an entry zone definition was critical for Method 2 of generating
candidate needles, the entry zone was taken to be the convex hull of the needle locations
at a plane perpendicular to the z-axis taken 2 cm below the most inferior slice of the bulb,
which was an estimation of the skin surface. A 5 mm margin was added to the entry zone
so that the region would not be tight to the needle locations used. The needle locations
in the plane were interpolated between the closest dwell positions to the plane. This entry
zone definition ensured that NPIP needle configurations only utilized the space used by the
physician. The entry zone area ranged from 7 to 13 cm2.

4.3.3 Method Evaluation

4.3.3.1 NPIP Evaluation

NPIP was used to compute needle configurations for each patient. For the candidate needle
set generation component, the convex hull calculations were done using the Matlab func-
tion, convhull, and convex hulls were subdivided into triangles using the Matlab function,
delaunay. The candidate needle sets were generated using Method 2 with 5,000 random
samples. This number of initial candidate needles was found to produce consistent results
across trials. Dwell positions were generated along each needle from the entry zone to the
needle tip in 5 mm increments. Needles intersected an organ if at any contour slice of that
organ, the interpolated x-y position of that needle was contained in the slice. The tip of
each needle was truncated at the most superior dwell position in the target.

A needle diameter of γ = 1.7 mm was used to check collisions. This is the diameter of
the needles used in our clinic.

Cover points were generated for the target using a uniform grid with 5 mm spacing in
the x-y direction and 3 mm spacing in the z–direction. Since the density of the final needle
configuration was controlled by the user-parameter, δ, it was expected that for a given δ,
large prostates would generate more needles than small prostates. To make the results from
different-sized prostates more comparable, δ was always chosen relative to the radius of a
sphere with equivalent prostate volume. For conciseness, all δ values in this study were stated
as a percentage of this radius. For each patient candidate needle set, a needle configuration
was computed for δ values ranging from 25% to 50% in increments of 5%. Initial tests with
NPIP showed that this range of δ produced an interesting range of needle configuration
sizes. Specifically choosing δ less than 25% produced needle configurations with more than
25 needles, which was too many to be clinically relevant, and choosing δ more than 50% had
too few needles to meet dose objectives.

Instances of N(P ,N ,δ) were solved using Matlab R2011a on a Lenova ThinkPad with
an Intel i5-2410M processor and 4GB of RAM. The Matlab interface for CPLEX 12.4 [21]
was used for the integer program optimization. There were six conditions to terminate the
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optimization process: (1) a provably optimal solution was found, (2) N(P ,N ,δ) was proven
to be infeasible, (3) the optimization timer went over 10 minutes, (4) the memory usage
exceeded 1 MB, (5) the number of branch and bound nodes exceeded 1000, or (6) the user
aborted the process. In the third through sixth case, the feasible solution with the smallest
objective function value was returned if one had been found already, and an error message
was displayed otherwise. These conditions can be set in CPLEX using standard internal
parameters. In practice, only a time limit needs to be specified for early termination. Other
termination criteria were added for this study because there was no straightforward way to
guarantee that the optimization solver would stop in 10 minutes, and more criteria were
added to reduce the risk of running over time. These limitations are strictly due to the way
CPLEX implements the time limit criterion. In a clinical deployment of this system, more
extensive software should be written to ensure that the optimization solver stops when the
timer expires. 1

A dose plan was generated for every computed needle configuration using IPIP. The
IPIP parameters and dosimetric criteria used in this study were the same as in Siauw et. al.,
2011 [102], except with the added restrictions that VBulb

75 ≤ 1 cm3 and VBulb
100 = 0 cm3. This

criteria was added to give some control over the dose to the bulb, which was not included in
the original IPIP study. The dose objectives used in this study conform to the specifications
given in the RTOG-0321 dosimetric protocol [46]. Dwell positions were generated along each
needle every 5 mm starting from the tip for this study and the sensitivity analysis study.
Only dwell positions inside the prostate were used for dose planning.

For each patient, the number of candidate needles, candidate needle set generation time,
number of collision pairs, and collision calculation time was recorded. For each instance of
N(P ,N ,δ), the number of points not included in I(δ), the time to construct the CPLEX opti-
mization model, solve time, termination status, and the optimality gap at termination were
recorded. The number of needles and compliance with dose objectives were recorded for ev-
ery needle configuration computed. To ensure the consistency of the results, the experiment
was repeated five times.

For comparison, a dose plan was also computed from the physician implant using IPIP.
The number of bulb punctures for each patient was also recorded.

4.3.3.2 Sensitivity Analysis

For the sensitivity analysis, the candidate needle set was generating using Method 1 with
parameters: α = 5 cm, β = 4 cm, and ρ = 5 mm. This produces an entry zone which is
underneath, z-negative direction, the most inferior slice of the penile bulb for every patient
case and is smaller than than the standard template for PPI brachytherapy, which is 10 cm
× 10 cm. Dwell positions were generated along each needle starting from the entry zone,
every 5 mm along the needle. Dwell positions outside the prostate were not used for this
study.

1In the newest version of CPLEX, currently 12.4, this bug is fixed and run time restrictions are reliably
enforced.
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As in the previous study, δ was always chosen relative to prostate size. For this study γ
was not used, or γ = 0, which means intersections were allowed. 2 The relationship between
δ, the resulting number of needles, the prostate size of the patient, dosimetry, and dosimetry
robustness was evaluated.

For each patient, a needle configuration was computed using NPIP for δ values ranging
from 25% to 50% in increments of 2.5%. Initial tests with NPIP showed that smaller δ
values produced very large needle configurations (e.g. 25 or more needles) and lower δ values
gave very small configurations (e.g. 6 or fewer needles). Configurations with more than 25
needles are of no practical value given that state-of-the-art practice for HDR brachytherapy
uses between 16-18 needles. Configurations with less than 6 needles were not able to meet
dose objectives. The 2.5% increment was determined to be the smallest value for which
subsequent increments produced differently sized needle configurations.

After computing a needle configuration for each patient-δ pair, a dose plan was computed
using IPIP. For this study, we say a needle configuration meets dose objectives, if a dose plan
can be computed from it, using IPIP, that meets dose objectives. A needle configuration is
said to be satisfactory if it meets dose objectives.

The robustness of each needle configuration to placement errors was evaluated by per-
turbing each needle configuration 25 times. A perturbation was computed by adjusting the
superior tip of each needle in the x– and y– direction according to a normal distribution with
mean equal to 0 and standard deviation equal to 2.5 mm. The perturbation in the x– and y–
direction was drawn independently. Since robots exist that can perform image guided needle
placement within 2 mm of a target location [80], these perturbations are approximately, but
greater than, the placement accuracy of existing robots. If a needle was perturbed such that
it intersected an OAR, it was truncated to the last dwell position in the target. If a needle
was perturbed such that it had no dwell positions in the target, then it was removed from the
configuration. These assumptions are, again, very conservative because it is unlikely that,
under some kind of image guidance, a robot or human-robot system would hit an OAR or
miss the target completely.

New dose plans were recomputed on every perturbed needle configuration. The reasoning
is as follows. In this study, perturbations represented uncertainty in needle placement. In the
clinical HDR brachytherapy workflow, needle positions are determined via scanning after the
needles are placed and after the placement uncertainty has been realized. Therefore, their
placed positions are known during dose planning.

The robustness of needle configurations is difficult to quantify since it depends on many
factors including, but not limited to, the strength and type of perturbation, patient anatomy,
and the geometry of the nominal needle configuration. For this study, we say a needle
configuration is robust if, over the perturbation set on that needle configuration, the average
target coverage minus one standard deviation is more than 90%. Recall that OAR dose
objectives will always be met with IPIP, regardless of the perturbed needle configuration.

For this study only, the integer program optimization was done using the Matlab interface

2At this stage of development of NPIP, we had not yet considered needle collisions.
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for the Mosek Optimization Toolbox v.6 [3], a medium to large scale optimization package.
The optimization solver for NPIP was set to terminate after 2000 subproblems. This cor-
responded to approximately one minute of running time. If an optimal solution could not
be found before the termination criterion was reached, the feasible solution with the fewest
needles was returned if one had been found, and an error message was thrown otherwise.

4.4 Results

4.4.1 NPIP Results

Despite the large variety of entry zone shapes, organ geometries and sizes, a needle con-
figuration that used less needles than the physician, avoided the penile bulb, met all dose
objectives, and was collision-free was computed for each patient. A needle configuration for
each patient is shown in Figure 4.6. Results for each instance of N(P ,N ,δ) are summarized
in Table 4.2. Each table entry contains the average number of needles in N(P ,N ,δ) over the
experiments, the average target coverage of the computed needle configurations over each
experiment, and the number of instances that were feasible. The number of feasible instances
is marked in bold if there were any infeasible instances. Note that the dose planning com-
ponent, IPIP, was guaranteed to meet all dose objectives except target coverage. Therefore
if target coverage was over 90%, the needle configuration met all dose objectives.

The number of needles and the ability to meet dose objectives decreased as the needle
coverage radius, δ, increased. This was expected because a higher needle coverage radius
allows each chosen needle to cover more volume, which requires fewer needles to cover every
point. The table suggests that in practice, 35% or 40% could be chosen for the value of δ
to ensure that the final needle configuration met dose objectives. For δ = 35%, N(P ,N ,δ)
was sometimes (but rarely) infeasible, but when feasible, could always meet dose objectives.
For δ = 40%, N(P ,N ,δ) was always feasible and on average, always met dose objectives.
However, there were a few cases where target coverage was less than 90%. The likelihood of
infeasibility did not appear to be related to the size of the prostate.

After needles were discarded due to collision with organs, the number of candidate needles
ranged from 510 to 2599. Generally for each patient, the standard deviation of the number
of candidate needles over the experiments was within 10% of the average number of needles.
The run time for generating the candidate needle set ranged from 17 to 55 seconds. Almost
all the time generating candidate needle sets was spent checking for needle intersections with
organs.

Collision checking needles found between 19611 and 352872 collision pairs, depending on
the size of the candidate needle set. Collision checking took between 11 and 286 seconds.

There were 540 instances of N(P ,N ,δ) that were attempted: 18 patients × 6 δ-values
× 5 experimental iterations. The number of cover points ranged from 463 to 1722. The
number of points in I(δ) was less than the total number of cover points in 56/540 cases. The
difference between the size of I(δ) and the size of P was between 1 and 9, and generally more
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Figure 4.6: A needle configuration that used less needles than the physician, avoided the
penile bulb, met all dose objectives, and was collision-free was computed for each patient.
An example needle configuration is shown for each patient.

points were removed when δ was small. The number of infeasible instances of N(P ,N ,δ) was
40/540. Infeasibility was more likely for smaller needle coverage radii, which was expected
since it was harder to meet coverage when the needle coverage radius was small. However,
small needle coverage radii were also associated with needle configurations which contained
more needles than were required to meet dose objectives. The runtime of N(P ,N ,δ) ranged
from 1 second to 2329 seconds, although there was an outlier that ran for 8809 seconds.

The total end-to-end runtime ranged from 31 seconds to 2968 seconds, excluding the
case where N(P ,N ,δ) took 8809 seconds. The average runtime was 286 seconds. For a given
patient, the total NPIP running time was approximately constant across δ values.

The physician implant could always meet dose objectives. The average number of in-
tersections with the penile bulb was 5 with a standard deviation of 3. Every patient case
had at least one bulb puncture. It is important to note that the bulb is not visible to the
physician under ultrasound, but can be contoured later on for dose planning. In Figure 4.7,
a physician implant is shown as well as a 12 needle NPIP configuration for the same patient.
The NPIP plans never intersected the penile bulb and met all dose objectives.

Given these results, needle configurations computed from NPIP have the potential to
reduce side effects of HDR brachytherapy without compromising the high survival rate
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Px Target Entry
Zone

δ =25% δ =30% δ =35% δ =40% δ =45% δ =50%

1 23 11 23 99 5 15 99 5 12 97 5 9 95 5 8 93 5 7 90 5
2 26 9 19 99 5 13 98 5 10 96 5 8 93 5 6 86 5 6 81 5
3 27 12 20 99 5 14 98 5 10 93 5 8 91 5 6 84 5 5 75 5
4 28 10 25 99 5 17 98 5 12 95 5 9 94 5 8 90 5 6 85 5
5 28 13 22 100 5 14 99 5 10 97 5 8 94 5 7 89 5 6 84 5
6 30 7 – – 0 18 98 1 15 97 4 11 95 5 9 93 5 8 87 5
7 34 9 – – 0 20 98 4 15 95 5 11 93 5 9 91 5 7 81 5
8 34 9 22 100 5 16 99 5 11 98 5 9 94 5 8 91 5 6 87 5
9 34 12 20 99 5 15 98 5 11 96 5 8 96 5 7 89 5 6 83 5
10 38 8 33 99 3 22 98 3 15 97 5 11 95 5 9 91 5 8 87 5
11 40 12 24 100 5 16 99 5 12 97 5 9 96 5 7 90 5 6 89 5
12 42 9 32 99 1 20 98 5 14 97 5 11 95 5 9 92 5 7 92 5
13 43 10 29 96 5 18 94 5 13 92 5 10 90 5 8 86 5 7 86 5
14 48 12 24 96 5 17 95 5 13 94 5 10 91 5 8 87 5 7 81 5
15 49 11 – – 0 19 97 5 14 96 4 11 95 5 9 92 5 8 88 5
16 61 10 33 99 1 20 97 4 15 96 4 12 95 5 10 92 5 7 87 5
17 69 13 25 97 5 16 96 5 12 95 5 10 93 5 8 91 5 7 88 5
18 85 11 27 97 5 18 96 5 13 95 5 10 92 5 8 91 5 7 86 5

Table 4.2: Table of results for N(P ,N ,δ). Each table entry contains (1) the average number
of needles, (2) the average target coverage as a percentage of the target volume, and (3)
the number of feasible instances of N(P ,N ,δ) over the NPIP experiments. Also included is
the prostate size [cm3 ] and entry zone size [cm2]. Dose objectives could always be met by
choosing δ = 35% or 40%. These δ values corresponded to needle configurations with approx-
imately 10-15 needles. Note IPIP guarantees healthy tissue sparing constraints. Therefore,
if target coverage was met, then all dose objectives were met.

associated with this treatment modality. However, the execution of these needle config-
urations will probably require some form of robotic assistance. The use of robots has
been been explored extensively for Prostate Permanent-seed Implant (PPI) brachytherapy
[19, 28, 32, 33, 59, 60, 79, 90, 100, 108–111]. It is possible that this technology can be adapted
to insert skew-line needle configurations for HDR brachytherapy.

4.4.2 Sensitivity Results

Using NPIP, 198 attempts were made to compute needle configurations for each patient-δ
pair: 18 patients × 11 δ values. Although a needle configuration could be computed for
every patient, 3/198 patient-δ pairs produced infeasible instances of NPIP. This condition
occurred because the candidate needle set could not cover every cover point in the prostate
for the smallest values of δ. Of the needle configurations computed, 67% were optimal, and
smaller needle configurations were more likely to be optimal than larger ones. On average,
the suboptimal solutions returned were within 2 needles of the optimal solution (i.e. gap
≤ 2 needles). The average runtime for NPIP was 50 seconds, and the median runtime was
20 seconds. Since the candidate needle set did not contain any needles that punctured the
penile bulb, no NPIP needle configuration punctured the penile bulb or any other OAR.
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Figure 4.7: Actual implant (left) and a computationally generated skew line configuration
(right). Needles are shown as cyan lines. The prostate is shown in red and the penile bulb
in yellow. The entry zone for needles is contoured in white. The physician implant used 16
needles and intersected the penile bulb six times while the computed needle configuration
used 13 needles and did not intersect the bulb. Both needle configurations met all dose
objectives for the patient.

The relationship between the average number of needles across patients versus δ, as well
as ±1 standard deviation error bars, is shown in Figure 4.8. As expected, the number of
needles decreased as δ increased. In other words, a larger spacing allowance resulted in fewer
needles. Note that the relationship between the number of needles selected and δ does not
contain any information about the quality of dose plans that could be generated from these
needle configurations (i.e. some of these needle configurations could not produce viable dose
plans). The standard deviation in the number of needles decreased as δ increased.

The relationship between the percentage of satisfactory and robust needle configurations
versus δ is shown in Figure 4.9. The percentage of satisfactory needle configurations de-
creased as δ increased. This was expected since the number of needles was also decreasing.
The largest δ value for which every needle configuration was satisfactory was δ = 40%. This
corresponded to needle configurations with an average of 11 needles. However, only 11%
of these needle configurations were robust. For δ = 32.5%, all but one of the needle con-
figurations were robust. This corresponded to needle configurations with an average of 16
needles.

Unexpectedly, there were fewer robust needle configurations for δ = 30% than δ = 32.5%,
which implied that larger needle configurations were less likely to be robust. Closer inspection
of the results showed three non-robust for δ = 30% had target coverage over 89%, which is
very close to the 90% cutoff. In other words given 1% leeway on the target coverage dose
objective, all patients would have had robust needle configurations at δ = 30%.
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Figure 4.8: Average number of needles in NPIP needle configuration versus δ. Here δ is given
as a percentage of the radius of a sphere with equivalent volume to the prostate volume of

the patient. Specifically, ` =
(
3V
4π

) 1
3 , where V is prostate volume. The error bars are ±1

standard deviation from the mean. A δ value of 32.5% resulted in needle configurations with
the same average number of needles as is standard at our clinic, which is 16, and a standard
deviation of 2 needles.

A robustness plot summarizing the results related to a patient anatomy data set (i.e.
needle configuration, dose plan, and perturbation results) was created for each patient. An
example is shown in Figure 4.10. On the x-axis is δ. The number of needles resulting
from the given δ value is shown as a bar graph. Each bar is labeled with the number of
needles in the needle configuration. Above the bar graph are filled dots signifying the target
coverage for nominal needle configurations. Also above the bar graph is a plot of the mean
target coverage over the perturbations of the given needle configurations vs. δ as well as ±1
standard deviation error bars. Recall that we consider a needle configuration to be robust if
the mean target coverage minus one standard deviation over the perturbations is more than
90%. The robustness plot for each patient are shown in Appendix B.

In general, target coverage decreased as δ increased. The standard deviation for target
coverage increased as the number of needles in a configuration decreased. This was expected
since the contribution of a random large perturbation to a single needle influences the quality
small needle configuration is more than a larger one. Patients with larger prostates tended to
have a smaller standard deviation for target coverage than patients with smaller prostates,
even for needle configurations with the same number of needles.
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Figure 4.9: Percentage of satisfactory and robust needle configurations versus δ. A needle
configuration is satisfactory if the nominal dose plan has target coverage more than 90%; it
is robust if the mean target coverage over the perturbation set minus the standard deviation
is more than 90%. The largest δ value for which every needle configuration was satisfactory
was δ = 40%. This corresponded to needle configurations with an average of 11 needles.
However, only 11% of these needle configurations were robust. For δ = 32.5%, all but one of
the needle configurations were robust. This corresponded to needle configurations with an
average of 16 needles.
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Figure 4.10: Representative summary plot for single patient . On the x-axis is δ as a
percentage of prostate radius. The number of needles resulting from the given δ is shown
as a bar graph. Each bar is labeled with the number of needles in the needle configuration.
The target coverage for the nominal needle configuration is shown as a filled dot. There is a
plot for the average target coverage of the perturbed needle configurations and ±1 standard
deviation error bars. Needle configurations were perturbed by moving the inside tip of each
needle in the x and y direction according to a normal distribution with 0 mean and 2.5 mm
standard deviation. The plots looked very similar across all patients except that patients
with larger prostates had slightly more perturbations meeting dose objectives, even for the
same number of needles.
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4.5 Discussion

Needle configurations could be computed for each patient in our data set that avoided the
penile bulb and met dose objectives. Since the bulb was punctured at least once by the
physician in every patient case, and bulb puncturing may be related to side effects, there
is potential for automatically generated needle configurations to reduce side effects of HDR
brachytherapy. Robot-assisted brachytherapy is a framework that can utilize a needle plan-
ning system like NPIP. However, some work is still required before HDR brachytherapy
robots can become clinically relevant. Some of this work is discussed in this section.

Needle planning requires a definition of the entry zone where needles can be inserted
into the body. The main challenge in defining the entry zone is that the patient is in
supine position with legs closed during scanning, but legs open during needle insertion.
Therefore, any entry zone definition made according to the CT scan would not be an accurate
representation of the entry zone during the insertion procedure. To address this concern, the
patient should either be scanned in a different position that could accommodate both the
robot and the scanner, or the entry zone would need to be modified according to the change
in position. Methodology to accomplish this task is beyond the scope of this paper.

NPIP requires a digitized anatomy set to compute a configuration of needles. However
in the standard HDR brachytherapy workflow, the scan is taken after the needles have been
inserted. This workflow inconsistency can be addressed by borrowing from the PPI brachy-
therapy workflow. In PPI brachytherapy, the patient is scanned and from the digitized
anatomy set, a source configuration is computed and implanted by a physician. To incorpo-
rate NPIP into HDR brachytherapy, a similar approach can be taken. First, a scan is taken,
then a needle configuration is computed, and finally is implanted by a physician or with the
assistance of a robotic implant device. Another scan can then be taken to determine the
needle locations for dose planning.

NPIP was designed to be used in conjunction with needle insertion robots. Care was taken
in designing NPIP such that needle configurations computed from it could be executed by
these robots. However, a study testing the implant feasibility of computationally generated
skew-line needle configurations by robots should be done as a follow-up study. We suggest the
following workflow for this future study: (1) scan a tissue phantom, (2) digitize the relevant
anatomy, (3) compute a needle configuration with NPIP, (4) use a needle insertion robot
to implant the needle configuration, (5) scan the phantom to verify the needle locations,
(6) given the implanted needle configuration and patient anatomy, compute a dose plan for
the patient, (7) deliver the dose plan in-silico, and (8) remove the needles. Our sensitivity
analysis of dose distributions with respect to the number of needles suggests that choosing
16 needles (δ approximately 35%) will be able to meet dose objectives robustly (i.e. within
the placement precision of robotic needle insertion systems).

As mentioned earlier, it would be very useful to mathematically represent Ω, the set of
straight needles that can be inserted by a robot, enter through the entry zone, penetrate the
prostate, and do not penetrate any OAR. This representation would be useful for several
reasons. First, it could shed some light on why some cases, such as patients 6,7, and 15
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in Table 4.2, are difficult to find needle configurations for, even when the same δ value can
find a needle configuration for other other patients. For example, it could show that certain
regions of the prostate are difficult, if not impossible, to reach without penetrating OAR.
This information could be used to select candidate needles in a way that helps generate
needle configurations for these patients for lower values of δ (i.e. less needles). Since a finite
subsample of Ω must be always be generated prior to needle selection, a full representation
of Ω could also determine regions of the prostate which can only be reached by a few needles.
Thus, these needles can be included in the candidate needle set, which has advantages over
relying on random sampling to find these needles.

4.6 Conclusion

We have presented Needle Planning by Integer Program (NPIP), a system for automatically
generating skew line needle configurations that are patient-specific, collision-free, and avoid
the penile bulb. We have shown that given the correct input parameters, NPIP can generate
needle configurations which meet dose objectives and use as many or fewer needles than the
current HDR brachytherapy workflow. We have also shown that, even given a crude can-
didate needle set, the final needle configuration is robust to minor placement perturbation.
In the following chapter, we explore the use of a needle insertion robot to execute these
implants, and make some comparisons to an expert brachytherapist.
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Chapter 5

Towards Robot-Assisted HDR
Brachytherapy

5.1 Overview

In the previous chapter, we developed NPIP, a computational system for generating pa-
tient specific HDR brachytherapy needle configurations for a patient. This chapter presents
work from Garg et al., 2012 [41], which utilized NPIP and a needle insertion robot called
Acubot-RND [108] to physically implant needle configurations computed from NPIP into an
anatomically correct prostate gelatin model. We present experiments with a robotic HDR
brachytherapy system consisting of planning software, Acubot-RND, and a human with no
brachytherapy clinical experience. We show that needle configurations implanted using our
robotic workflow were able to meet dose objectives without puncturing any healthy organs.
Thus, the work presented in this study has the potential to successfully execute HDR brachy-
therapy with less side effects and without requiring a highly trained specialist.

5.2 Background

Recall that in PPI brachytherapy, a source configuration is computed from a treatment
planning system and is implanted into the patient using one needle at a time, although one
needle may contain several sources. A needle is loaded with the sources and inserted into
the patient. The sources are left inside the patient as the needles are retracted. The needle
is then reloaded with the next set of sources and the process is repeated. Currently, needle
insertion robots designed for brachytherapy are specialized for PPI brachytherapy. Thus,
brachytherapy robots are designed to have only one needle inserted at a time; not several
simultaneously as is required for HDR brachytherapy.

To be suitable for HDR brachytherapy, a robot would need to “drop”, or let go of, an
inserted needle so that the next needle could be inserted. Fortunately, the robot used for this
study has the ability to drop needles, although this functionality was designed as a safety
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Figure 5.1: Photograph of a prostate phantom used in this study. The anatomy included
was the prostate, urethra, bladder, penile bulb, pubic arch, rectum, and a CT marker for
calibration with the robot and to represent the center of the perineum. The soft organs and
connective tissues were gelatin-based. The pubic arch was constructed from clay putty. The
Acubot-RND is registered to the CT-marker on the entry face of the phantom.

measure for both the patient and the robot. In this study, we modify the drop function
of the Acubot-RND and develop custom software which allow it to perform brachytherapy
autonomously.

5.3 Method and Materials

We will complete the following tasks within a brachytherapy environment: (1) compute a
needle arrangement for the digitized anatomy of the patient that lies completely within the
workspace of the robot, avoids non-prostate structures, uses needles economically, and meets
dose objectives for the patient, (2) in a structured experimental setting, implant the needle
arrangement in a tissue phantom using the robot, and (3) compute a dose plan from the
implanted needle arrangement that meets treatment dose objectives. We will confirm the
needle placement accuracy and the quality of dose plans using established clinical metrics.

5.3.1 Phantom

For this environment, the patient was modeled by a tissue phantom which included realistic
representations (i.e. shapes and sizes) of the prostate, urethra, bladder, penile bulb, pubic



CHAPTER 5. TOWARDS ROBOT-ASSISTED HDR BRACHYTHERAPY 59

arch, and rectum. We assumed that the tissue phantom was an acceptable model of the
human prostate and nearby structures. Additionally the gelatin-based phantom was assumed
to mimic human tissue stiffness properties. We also assumed that the anatomy remained
unperturbed between scanning (anatomy digitization), and needle insertion. For this study
we did not account for anatomy deformations during needle insertion, i.e. we assumed that
needle insertions did not significantly alter the anatomy models.

A CT marker, a small radio-fluorescent pellet visible on CT-scan, was placed on the entry
surface of the phantom. The CT marker was used to register the coordinate system of the
planning algorithms with the robot space. We also defined an entry plane on the surface
of the phantom for needles to enter. The entry plane was centered on the CT marker. We
assumed that this entry plane defined the space where needles could be inserted into the
perineum, which is the region where needles are inserted in an actual HDR brachytherapy
procedure. The CT marker and entry plane location is shown on a phantom in Figure 5.1.

5.3.2 Planning

Needle arrangements were optimized using Needle Planning by Integer Program (NPIP)
[103]. A candidate needle set was generated for the patient. This candidate needle set
consisted of parallel lines and skew-lines. Skew-lines are non-parallel, non-intersecting lines.
Although the needles intersected at four base points in the non-parallel set, the physical
needles used for this study did not extend back to the point of intersection. The candidate
needle set was chosen to (1) be within the workspace of the robot, (2) cover the space
of needle arrangements possible with the degrees of freedom of the robot, and (3) contain
mostly needles that did not intersect the penile bulb. A picture of the candidate needle set
is shown in Figure 5.2. Note that this is Method 1 from the previous chapter.

Needles that intersected organs other than the prostate were removed from the set because
naturally, we would like to avoid puncturing them to avoid side effects. However, organs such
as the penile bulb may be punctured in practice due to placement inaccuracies of the robot.
Therefore, we propose the organ volume displaced by needles as a “trauma metric” for needle
arrangements. Specifically the trauma metric for organ s induced by a needle configuration
is

Ts =
∑
k

AkL
s
k,

where Ak is the cross sectional area of needle k and Lsk is the length of needle k puncturing
organ s.

All dose plans were optimized to a given needle arrangement using Inverse Planning by
Integer Program (IPIP). The IPIP model, RTOG dose objectives, and optimization param-
eters were the same as in [102]. A prescription dose of 950 cGy was applied to all planning
cases.
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Figure 5.2: The candidate needle set was the set of needles that were available during needle
planning. For this study, the candidate needle set consisted of parallel lines and skew-lines
(non-parallel, non-intersecting) minus any needle that intersected a non-prostate organ. The
entry plane, which represents the region of the perineum where needles can enter the phantom
is also shown.

5.3.3 The Robot: Acubot-RND

This study used the Acubot-RND system developed at Johns Hopkins University [108] which
is shown in Figure 5.3. Custom software was written for the Acubot-RND to automate nee-
dle insertion. The hardware and software components are described in detail in the following
paragraphs.

Hardware Specifications Acubot-RND is a 7-DoF robot designed specifically for nee-
dle insertion. The 7 DoF are separated into three components of Acubot-RND: a 3-DoF
Cartesian Positioning Stage (CPS), a 2-DoF Rotating Center of Motion (RCM), and a 2-
DoF Rotating Needle Driver Module (RND). Figure 5.3 shows the degrees of freedom of the
Acubot-RND. The RND is supported by the RCM, which sits on a passive positioning arm.
The arm can be manually adjusted using tightening screws to position the RCM in a default
configuration. The positioning arm is unactuated and rests on the CPS.

The CPS can move in the 200 mm along the x-axis, 50 mm along the y-axis, and 50 mm
along the z-axis. The CPS has a spatial resolution of 0.01mm [32]. A trapezoid velocity
profile was used for the CPS (Velocity: 10mm/s, Acceleration: 2 mm/s2).

The RCM is a robotic orientation module that aligns the RND about two orthogonal axes
while maintaining a fixed location for the tip of the outer nozzle of the needle holder (i.e. the
center of motion). The inverse kinematics of the RCM joints to hold the needle tip in place
while orienting it are built into the original Acubot-RND software. The default RCM joints
have ball-worm motors which do not have rotation hard stop limits. Hence the RCM did not
have a built-in homing sequence to return it to a fixed orientation in space. Therefore, the
Acubot-RND was operated under manual joystick control. The system was modified to allow
for a software homing procedure which is essential for autonomous operation of the robot.
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Figure 5.3: Photograph of Acubot-RND and degrees of freedom (DOFs). The Acubot-RND
has 7 DOFs: a Cartesian Positioning Stage (CPS) which can move in the x-, y-, and z-
direction, a Rotating Center of Motion (RCM) module which can rotate the needle around
the needle tip, and a Rotating Needle Drive (RND) which can insert and rotate the needle.

The range of the RCM joints were set to allow 150°of rotation (-75°to 75°) in both axes with
a resolution of 0.01°. A trapezoid velocity profile was also used for the RCM (Velocity: 8°/s,
Acceleration: 2°/s2).

The RND can insert and rotate the needle. The RND performs insertion to a maximum
depth of 120 mm using a trapezoid velocity profile with maximum velocity if 10 mm/s and
acceleration of 2 mm/s2. The needle insertion DoF has a spatial resolution of 0.01mm.
Needle rotation was not used in this experiment. However, it has been shown that needle
rotation improves targeting accuracy [10]. The RND has a needle release mechanism which
enables the user to command it to release the needle at anytime during the procedure. The
RND also is equipped with force sensors at the needle-guide. These sensors were not used
in this study, but could be used in future work to improve placement precision.

In Figure 5.3, DoF 1-3 belong to the CPS, DoF 4-5 belong to the RCM, and DoF 6-7
belong to the RND.
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Figure 5.4: Diagram of assumed orientation of phantom, and needle insertion direction (left)
and photograph of Acubot-RND in relationship to phantom and in zero-position (right).

Software Specifications Acubot-RND by design operates under manual joy-stick con-
trol to perform needle insertion. Specifically, each joint can be individually selected and
controlled by an operator using a joy-stick interface. Autonomous operation was not pre-
viously possible because the unactuated positioning arm and the lack of stop limits on the
RCM ball-worm motors did not allow a fixed reference space for the RCM. The original
control system for Acubot-RND was augmented with custom software to allow automated
needle insertion using an assumed hardware configuration, i.e. default orientation for each
DoF and positioning arm orientation. The system takes as input a pair of cartesian coordi-
nates: the insertion point of the needle on the entry plane and the target point inside the
phantom. The input is passed from planner to the Acubot-RND as a formatted text file of
coordinate pairs, one pair for each needle.

For inverse kinematic calculations, a specific orientation of the hardware was assumed.
For this study, the RCM was oriented using the positioning arm such that 0 degrees in both
RCM DoF resulted in the RND oriented along the z-positive axis. Furthermore, the rotation
of one RCM joint resulted in a rotation of the RND end effector in only the x-z plane, Θxz,
and the other RCM joint swept only in the y-z plane, Θyz. This orientation had the x-axis
and z-axis of the robot space perpendicular to gravity. The Acubot-RND was brought into
this orientation by carefully fixing the positioning arm using a level.

Let P0 = (x0, y0, z0) and Pf = (xf , yf , zf ) denote a cartesian coordinate input pair for
our custom software. To implant the needle represented by this pair, a mapping of the 3D
coordinate space to the 6D joint space of the Acubot-RND must be calculated. To simplify
inverse kinematics, the insertion of the needle specified by these points was decoupled into
three sequential tasks. (1) The tip of the needle was moved to P0 using only the actuation
in the CPS. (2) The RCM joints were actuated to orient the RND toward Pf . According to
the physical orientation of the Acubot-RND used for this study, the angles of the two RCM
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joints were

Θxz = tan−1
(
xf − x0
zf − z0

)
, and Θyz = tan−1

(
yf − y0
zf − z0

)
.

(3) The needle tip was inserted to Pf by actuating the needle insertion DoF of the RND a
depth of d = ||Pf − P0||.

After the needle was inserted to the target point, the robot was retracted back to the
insertion point (P0) using the RND, and the RCM was then re-orientated to zero position.

The software was also set to pause the needle insertion operation at critical points in
the execution and wait for an operator command to continue. These stopping points were
between needle insertions, before releasing the needle from the RND (discussed in Section
5.3.4), and orienting the RCM back to zero position after needle insertion.

Integration with Needle Planning The entry plane is defined as the planar segment
where needles can be inserted. The size of the entry plane is limited by the maximum ranges
of the x- and y-DoF of the CPS because the needle tip is brought to the needle insertion
point on the entry plane using only these joints. The maximum ranges of these joints result
in a rectangle 200 mm in the x-direction and 50 mm in the y-direction. In case of calibration
or other setup errors, a conservative entry plane of 45 mm × 45 mm was used for this study.
This entry plane is smaller than the standard template for PPI- and HDR brachytherapy,
which is 100 mm × 100 mm. This entry plane is shown on the phantom in Figure 5.1 and
relative to the candidate needle set in Figure 5.2.

5.3.4 Method Evaluation

5.3.4.1 Robotic Implant

The robot implant workflow consisted of pre-implant scanning and planning, robot setup
and calibration, needle implanting, and post-implant scanning and dose planning. Each step
is discussed in detail in the following paragraphs.

Pre-Implant Scanning and Planning A CT scan was performed on each phan-
tom. The organs of the phantom and the CT marker were segmented using the Nucletron
Oncentra® Dynamic Planning Environment. The 3D organ models were exported to NPIP.
A candidate needle set was generated, and NPIP computed a needle arrangement for each
phantom. A dose plan was also generated using IPIP to verify that the planned needle
arrangement could produce a clinically acceptable dose plan. The needle insertion and tar-
get points for each needle arrangement were written to a formatted text file for our custom
software.

Robot Setup and Calibration The phantom was moved to the robot work area
and clamped to the table to ensure immobility during the procedure. The list of cartesian
coordinate pairs specifying the needle arrangement was input to Acubot-RND.
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The robot was calibrated to the position of the phantom by simultaneously (1) putting
the robot in zero position, (2) placing the needle tip on the CT marker, and (3) placing the
phantom such that the translational axis , x-DoF and y-DoF, of the CPS were parallel to the
entry surface of the phantom. Parallelism of the X-Y plane of the robot space to the entry
surface was determined by moving the needle tip in the x-axis and y-axis of CPS using the
joy-stick controller. A visual inspection was made to determine if the needle tip was always
the same distance from the phantom surface. We refer to this calibrated positioning of robot
and phantom as the initial state. Figure 5.4 shows the Acubot-RND and phantom in initial
state.

The Acubot-RND used an 18-gauge, 15 cm long, diamond-tip brachytherapy needle
(COOK Biotech) for this procedure. The needle is a 2 mm diameter hollow sheath which
houses a rigid stylet. Since Acubot-RND was not designed for multiple needle insertions in
HDR brachytherapy, needle segments were cut from the stylets of regular brachytherapy nee-
dles. These needle segments were used to represent the hollow needles that would be inserted
in a regular HDR brachytherapy procedure and connected to an afterloader for dose delivery.

Needle Implant Workflow To implant the input needle arrangement, the Acubot-
RND was brought into initial state, and each needle was inserted sequentially according to
the following procedure:

(1) Acubot-RND reached an insertion point in zero position.
(2) Acubot-RND aligned needle towards the target point.
(3) Acubot-RND inserted the needle tip to the target point.
(4) Acubot-RND halted for needle segment insertion.
(5) Operator removed the Acubot-RND stylet.
(6) Operator insertsed a needle segment to needle tip.
(7) Operator manually held the stylet.
(8) Acubot-RND released the needle.
(9) Operator pulled the needle over the stylet.
(10) Needle segment was left in place.
(11) Acubot-RND returned to zero position.
(12) Operator placed needle and stylet back into RND.

Note that the Steps 1, 8, and 11 were initiated on operator command.

Post-Implant-Scanning and Dose Planning After executing the implant, a second
CT scan was obtained of the phantom. The metal needle segments could be identified but
created significant artifacts on the CT scan. This made segmenting the anatomy rather
difficult. However, since the phantom was static and provided many rigid control points,
co-registration between the pre-implant and post-implant CT scans could be performed
without introducing significant uncertainty. Co-registration is a standard feature in the
Oncentra planning system. The needle positions and co-registered anatomy were used to
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compute a second dose plan using IPIP. Relevant dosimetric indices, trauma metrics, and
error measurements were computed and are listed in Table 5.1.

5.3.4.2 Expert Implant

To compare our system with the performance of a physician on a similar task, an implant
was performed on a tissue phantom by a Dr. I-Chow Hsu (the fifth author), a professor of
radiation oncology at UCSF (expert). The expert is a certified radiation oncologist with a
specialization in brachytherapy and over 18 years of clinical experience. The expert inserted
16 standard HDR brachytherapy needles into the phantom under trans-rectal ultrasound
(TRUS) guidance using the UCSF-developed freehand technique [57]. A HAWK 2102 EXL
TRUS system from B-K Medical was used for ultrasound imaging. Post-implant scanning
and dose planning was performed using the same method as for the robot implants.

5.4 Results

There were three custom tissue phantoms constructed for this study: two for tests with the
robot and one for the expert. There were two needle arrangements defined for each phantom:
the pre-implant NPIP arrangement (planned) and the post-implant arrangement (actual).
We label the needle arrangements computed by NPIP for the two phantoms as P1 and P2
to distinguish them from the actual implanted needle arrangements, A1 and A2. Since the
expert implant was done manually, there was no pre-implant needle plan. We label the third
phantom implanted by the expert as Expert.

The CT scans of the tissue phantoms were taken in 3 mm thick slices. The contoured
prostate volumes for the three phantoms were 39 cm3, 32 cm3, and 37 cm3. The total
phantom volume was 750 cm3. The regions of interest were contoured using Oncentra®

version 4.1 by a medical physicist. Note that a clinician in radiotherapy, even one without
brachytherapy experience, would have basic proficiency in organ contouring. Therefore,
although the novice did not perform the contouring in this study, it can be assumed that a
novice clinician using our robotic system would be able to do it. There was a 2 mm margin
added to the contours of the penile bulb to ensure small placement errors did not result in
puncturing of the bulb. Specifically, the contours of the bulb were made 2 mm larger in
every direction. Adding margins is a common tool in radiation oncology dose planning and
is a standard feature in Oncentra.

The number of needles in the NPIP candidate needle set after needles intersecting non-
prostate organs were removed was 287 and 229 for P1 and P2, respectively. The NPIP δ
parameter [103] was fine-tuned until NPIP returned a needle arrangement with 16 needles,
the standard number used for HDR brachytherapy at the UCSF clinic. This corresponded
to a δ value of 6.5 mm for the first phantom and 6.0 mm for the second phantom. All
computational tasks were performed using Matlab R2011a on a Lenovo ThinkPad with an
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Figure 5.5: Photograph of tissue phantom with robot-implanted needle segments. The
organ boundaries and needle patterns are superimposed on the figure for visual aid. No
non-prostate organ was punctured in the insertion of this implant.

Intel i5-2410M processor and 4GB of RAM. The integer program optimization was done
using the Matlab interface for the Mosek Optimization Toolbox v.6 [3].

The computed needle arrangements were implanted into each phantom in approximately
45 minutes plus setup time. A side view of an implanted phantom is shown in Figure 5.5.
The expert implant took approximately 15 minutes to execute.

5.4.1 Clinical Analysis

Relevant dosimetric indices and trauma metrics are shown in Table 5.1.
There was a small difference between the dose plan from the planned arrangements and

the dose plan from the actual arrangements for most of the indices. The one exception is
the difference in VBladder

75 values for P2 and A2 which were 0.3 cm3 and 0.8 cm3, respectively.
The clinically acceptable limit for this criterion is 1 cm3. This discrepancy is due to the
needles not being inserted far enough into the prostate. As a result, the dwell times at the
superior section of the prostate were increased by the dose planning system to cover more
of the prostate with the prescription dose. The increased dwell times at the apex of the
prostate resulted in slightly higher bladder dose because the bladder is above the prostate.
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Phantom 1 Phantom 2 Expert
Index Req. P1 A1 P2 A2

VProstate
100 ≥ 90% 99.0 97.0 96.0 96.0 98.0

VProstate
150 ≤ 45% 39.0 40.0 40.0 37.0 37.0

VBladder
75 ≤ 1 cm3 0.00 0.00 0.30 0.80 0.30

VBladder
100 = 0 cm3 0.00 0.00 0.00 0.00 0.00

VBulb
75 ≤ 1 cm3 0.00 0.00 0.00 0.00 0.00

VBulb
100 = 0 cm3 0.00 0.00 0.00 0.00 0.00

VRectum
75 ≤ 1 cm3 0.06 0.00 0.00 0.00 0.00

VRectum
100 = 0 cm3 0.00 0.00 0.00 0.00 0.00

VUrethra
125 ≤ 1 cm3 0.06 0.05 0.04 0.06 0.07

VUrethra
150 = 0 cm3 0.00 0.00 0.00 0.00 0.00

VBody
100 = 0 cm3 0.00 0.00 0.00 0.00 0.00

TBulb min 0.00 0.00 0.00 0.00 0.00

Table 5.1: Dose and trauma metrics for implants by robotic system (planned (P) and actual
(A)) and for implant by expert

The trauma metric computed for this study was Tbulb because it was the only organ
that was at risk of being punctured in our setup. The trauma metric was computed using
Ak = πr2 mm2 for all k using r = 1 mm (standard HDR brachytherapy needles have 1 mm
radius) and Lbulb

k was computed by counting the number of contour slices the needle was
within the bulb and multiplying it by the CT-Scan slice thickness, which was 3 mm. The
bulb contours without the 2 mm margins were used to compute this metric. However, the
trauma metric for the bulb was 0.00 mm3 for every case because the bulb was not punctured.
However, with a different experimental setup or physician, this may not be the case.

5.4.2 Placement Error Analysis

To measure the placement error, we sampled regularly spaced points on the planned and
actual needles starting from the tip, every millimeter, for 6 centimeters along the length
of the needles. This was approximately the length required to reach the entry face of the
phantom. For a single needle, the corresponding points were the points on the planned and
actual needle which were the same distance from their respective tips.

The total placement error was calculated as the RMS distance between all the planned
and actual needle points. The RMS error was 2.6 mm for Phantom 1, and 4.3 mm for
Phantom 2.

These placement errors were large with respect to other needle insertion experiments with
robots [80], which was about 2 mm, and the internal accuracy of Acubot-RND, which is sub-
millimeter. We separated the placement error into a systematic error and random error. We
computed the the systematic error as the least-squares rigid translation and rotation from
the implanted needle points, X, to the planned needle points, Y . Specifically, we computed
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the least-squares rotation matrix, R, and the translation vector, T , which minimized∑
i

‖yi − (Rxi + T )‖,

where yi was the ith planned point and xi was the ith implanted point. For this purpose, we
utilized the least-squares rigid transformation between point sets presented in Arun et al,
1987 [5].

We report the systematic error as the sextuple, (εx, εy, εz, α, β, γ), where εx, εy, and εz
are the least squares translations in the respective directions reported in millimeters, and α,
β, and γ are the rotations in the Euler angles reported in degrees. The Euler angles were
computed as

α = arcsin(R1,3), β = arccos

(
R1,1

cos(α)

)
, and γ = arccos

(
R3,3

cos(α)

)
.

The systematic error was, for Phantom 1 and Phantom 2 respectively,

(1.2, 1.4, 0.81, 1.8◦,−.90◦, 1.6◦) and (.90, 2.2, 2.4, 1.3◦, 0.83◦, 3.5◦).

We computed the random error as the total RMS distance between the planned points
and actual points after the systematic error was removed, which was 1.4 mm for Phantom
1, and 2.4 mm for Phantom 2. These errors are similar to those reported in Muntener et
al, 2008 [80], which performed multiple needle insertions into a living canine in a clinical
environment.

A superposition of the planned (blue) and actual (red) needle arrangements for Phantom
1 and Phantom 2 are shown in Figure 5.6 and 5.7 (left), respectively. A superposition of
the planned (blue) and actual needles after calibration error was removed (magenta) is also
shown in the same figures on the right.

Table 5.2 gives numerical results for the needle placement errors. The errors are divided
into “Total Error” and ”Random Error”, where the Total Error is the RMS error between
the planned and actual points, and the Random Error is the RMS error between the planned
points and actual points after correction for systematic error. The RMS distance, d, and the
RMS distances in the x-, y-, and z-direction are given for each type of error. Also given are
the minimum and maximum RMS distances over the points in each needle (i.e. individual
needle errors) and the minimum and maximum RMS distances in the x-, y-, and z-directions.
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Figure 5.6: Superposition of planned (blue) and implanted (red) needle arrangement for
Phantom 1. Although no sensitive structure was punctured in the implanted needle arrange-
ment and all dose objectives were met, there was some placement error. The placement error
was separated into systematic and random error. When the systematic error was removed
from the implanted needle arrangement (magenta), the planned and adjusted points line up
very well.

Figure 5.7: Superposition of planned (blue) and implanted (red) needle arrangement for
Phantom 2, and planned and adjusted (magenta) needle arrangement.
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Phantom 1
Total Random

d x y z d x y z
All needle 2.6 1.4 1.6 1.5 1.4 0.5 0.5 1.2
min 1.3 0.5 0.2 0.1 0.2 0.0 0.1 0.1
max 4.1 2.5 2.5 3.0 2.5 0.8 1.1 2.3

Phantom 2
Total Random

d x y z d x y z
All needle 4.3 1.9 2.3 3.1 2.4 1.2 1.1 1.8
min 2.0 0.8 0.7 0.9 0.8 0.1 0.1 0.0
max 6.3 2.7 3.2 5.3 5.2 2.3 1.8 5.1

Table 5.2: RMS errors

5.5 Discussion

These experiments have confirmed that computationally generated needle arrangements can
be planned and executed using our robotic system with sufficient accuracy to achieve treat-
ment objectives and avoid puncturing healthy organs in our experimental setup. However,
our system had non-trivial placement errors which we have separated into systematic error
and random error. It is likely that systematic error is mostly the result of calibration error
between the robot and the phantom since the robot was manually calibrated and set into
zero-position using only a leveling tool. The reason for this explanation is that the total
RMS distance between the points was substantially reduced when the systematic error was
removed. Assuming that Acubot-RND can execute the needles accurately according to its
own internal reference frame (which previous studies have confirmed it can), a rigid trans-
lation and rotation of the robot relative to the phantom would have yielded much better
results.

The random error is either the cause of operator error during needle retraction (i.e. the
novice did not hold the needle exactly in place when retracting the needle over the stylet) or
error in co-registration of the CT images. Since the anatomy was unperturbed during needle
insertion and the rigid housing of the phantom provided many reliable reference points, it is
unlikely that co-registration between the CT images contributed significantly to placement
error. Operator error is most likely to manifest along the z-direction since the insertion depth
for the stylet is made manually and the stopping is made visually. This was the case in our
results since we had higher random error in the z-direction than in the other directions.

Both registration error and operator error may be reduced by hardware specialized for
HDR brachytherapy. For example, registration error may be reduced by improving the
calibration of the robot to the phantom with a custom fixture, which we will explore in
future work. Additionally, a robot specialized for HDR brachytherapy needle insertion can
reduce the role of the operator, which may reduce operator error. Specifically, a robot that
can perform the needle insertion step, performed manually by the novice in this study, may
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Figure 5.8: CT slice of physician implant (left) and robot implant (right). The expert implant
has needles evenly distributed around the periphery and inside of the prostate, while the
robot implants needles as skew lines. Our semi-autonomous system pre-computes optimal
anatomy specific needle arrangements which might not be symmetrical but are able to meet
treatment objectives and reduce trauma to sensitive organs at risk. Future improvements to
needle insertion hardware and planning software will result in improved treatment quality,
reproducibility and repeatability.

have superior performance to a human operator. According to other studies sub-millimeter
placement precision is possible with robots [10, 91,108], but not in a clinical setting.

In this study, we showed that, within our experimental environment, a novice without any
brachytherapy experience could use our robotic system to execute an HDR brachytherapy
needle arrangement that met treatment objectives. Figure 5.8 shows a cross-section of the
needle arrangement implanted by the expert (left) and by the robot (right). Although there
are some differences between the expert- and robot-executed implant, such as the lack of
needles in the periphery of the prostate in the robot-executed implant, it is possible that
robot-executed implants will be indistinguishable from human-executed implants in the near
future. The ability to repeatedly, reliably, and safely execute needle arrangements with
minimal involvement from an operator would be a significant step towards automating HDR
brachytherapy.

5.6 Conclusion

We have utilized our previous work on IPIP and NPIP to demonstrate the first semi-
automated robot implementation of skew-line needle arrangements for HDR brachytherapy.
Results suggest that the resulting skew-line needle arrangements are comparable to those
achieved by an expert human physician; both meet clinical objectives and avoid sensitive
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organ structures. Although there was non-trivial placement error, our results suggest that
an improved calibration device and specialized robotic HDR brachytherapy hardware may
be able to achieve much higher accuracy.
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Chapter 6

Towards a Dose Planning Integer
Program for Gamma Knife Perfexion

6.1 Overview

This chapter presents initial work in optimizing dose distributions for Gamma Knife, a
radiotherapy for tumors in the head [69,84,93] including acoustic tumors [35,36,85], cerebral
metastasis, [54, 56, 77], and sinus meningiomas [70, 94]. Although this work digresses from
the previously described work on brachytherapy, it applies several of the same optimization
principles, which shows that radiation oncology is a promising field for applied operations
research.

Gamma Knife Perfexion (GKP) is the latest hardware model in the Gamma Knife series
[69]. Studies have shown that it is capable of achieving higher dose conformity, i.e. delivering
high dose to the target with low dose to the surrounding tissue, than its predecessors [69].
However, it also a complicated device with many degrees of freedom to control the dose
distribution, which can make current manual treatment planning methods time consuming
and difficult. Since tumors in the head are often immediately surrounded by healthy brain
tissue, every cubic millimeter of healthy organ sparing can improve post-treatment quality
of life.

This study develops a quadratic integer program for computing GKP dose plans. The
dose planning philosophy is multi-objective, but it is readily extensible to dose-volume ob-
jectives. We provide computational studies on mock data since real data was not available.
We leave the acquisition of real data and comparison to current treatment planning methods
as immediate future work.

6.2 Background

Gamma Knife is a radiation therapy tool for tumors in the head [25], including but not
limited to trigeminal neuralgia, acoustic neuromas, pituitary adenomas, arteriovenous mal-
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formations, and cerebral matastases, and has been shown to be an effective alternative to
neurosurgery [25]. A Gamma Knife unit consists of three main components: a couch, a
helmet, and a radiation unit. The patient is attached to the couch in supine position using
a head frame which also immobilizes the head. The helmet sits over the head and collimates
radiation from the radiation unit into narrow beams which intersect at the focal point of the
helmet. The coach can move in the x-, y-, and z-direction with sub-millimeter accuracy to
move the focal point inside the head.

The Gamma Knife Perfexion (GKP) is the latest hardware model in the Gamma Knife
series. Unlike previous models, the GKP helmet is divided into 8 sectors of 24 beams (192
beams total). The beams in each sector can be set to one of four collimation diameters: 0mm
(closed), 4mm, 8mm, and 16mm. A GKP treatment plan is delivered in ”shots”, and each
shot consists of (1) a focal point, or ”shot center” inside the patient’s head, (2) a collimation
size selection for each of the helmet sectors, and (3) a length of time, or ”shot time”, where
the shot is actively delivering radiation to the patient. During planning, the shots are
determined which will produce a dose distribution that will meet treatment objectives for
the patient; generally, the eradication of the tumor with limited exposure to surrounding
tissue.

Studies have shown that conformity of the volume receiving a lethal dose of radia-
tion to the tumor volume is critical for eradicating the tumor and minimizing side ef-
fects [11, 17, 82, 88, 117]. Therefore, conformity of lethal dose to the target volume is the
primary consideration when dose planning. However, other contributing factors are the
total treatment time, which is related to patient discomfort, and the amount of time the
technician can or is willing to spend creating the plan, which is related to treatment cost.

Current treatment planning systems are primarily manual. The user selects shot centers,
collimation sizes for each of the sectors, and shot times. The planning system displays a
heat map of the resulting dose distribution and relevant quantitative information such as
the maximum dose to healthy tissue. The user makes changes to the plan according to
their experience and intuition and repeats the process until a satisfactory dose distribution
is achieved.

This planning workflow has three main limitations. First, the reliance on user input
creates treatment disparity between experienced and non-experienced users. Second, the
process consumes significant technician time, which is very expensive. Finally, and most
importantly, there are little to no metrics on the quality of the final dose plan, nor are there
guarantees that the final distribution is close the best distribution the hardware is capable
of delivering to the patient. In other words, there may be a preferable dose distribution that
is not found because of the searching limitations of the user.

Although optimization has been applied to Gamma Knife planning in the past, we could
find very little work on optimization for GKP [86], with the exception of the default planning
system, GammaPlan 10.0 [99].
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Term Description

J Set of shot centers
K Set of helmet sectors
L Set of collimator sizes
T Set of active shot times
G Set of organs of interest
P Set of dose control points
Ig The set of points that belong to g ∈ G
di Total dose to pi ∈ P
Dijk` Dose rate parameters
xjk` Binary variable for collimators
yjk` Dummy variable for tjxjk`
Tmax Maximum allowed shot time

Table 6.1: Gamma Knife terms

6.3 Method and Materials

6.3.1 Model Formulation

In this section, a quadratic integer program is developed for computing GKP dose plans. A
list of relevant terms is given in Table 6.1 for reference.

The model assumes that a set of shot centers have been specified by the user. Let J be
the set of shot centers, K be the set of sectors, L be the set of collimator sizes, and T be the
set of shot times. For brevity, we refer to a shot as j, a sector as k, and a collimator size as
`.

For this purpose, let G be the set of regions of interest, P be a set of uniformly spaced
dose control points over the total volume of interest, and Ig = {i : pi ∈ P belongs to g ∈ G}.
Note that pi can only belong to one organ. To differentiate the tumor volume and healthy
organs, let Gtumor be the tumor organ, and Ghealthy be the healthy organs.

First we develop constraints to model the dose delivered to a dose point as a function
of J and T . The total dose to a dose point is the sum of the dose contribution of each
shot, which is the aggregation of all the active beams. Let di be the total dose delivered to
pi ∈ P , Dijk`be the dose delivered to pi for every minute j is active given a configuration of
collimators over the sectors in the shot, and let xjk` equal 1 if and only if collimator size `
is chosen for sector k during shot j, and equal 0 otherwise. Note that the individual beams
in each sector can be aggregated together since the same collimator size must be chosen for
each sector. Then the dose at a dose point can be computed as

di =
∑
j

tj

(∑
k

∑
`

Dijk`xjk`

)
,
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which is a quadratic equality constraint that states that the total dose is the sum of the shot
times, tj, times the total dose rate over every sector and collimator size,

∑
k

∑
`Dijk`xjk`.

To ensure that only one collimator size is chosen, the following constraint is also used:∑
`

xjk` = 1,∀j∀k.

The dose equation can be linearized using a variable with behavior yjk` = tjxjk`. This
behavior can be achieved with the following set of constraints.

0 ≤ yjk` ≤ Tmaxxjk`,

tj − Tmax(1− xjk`) ≤ yjk` ≤ tj,

where Tmax is the maximum allowed shot time, and now di =
∑

j

∑
k

∑
`Dijk`yjk`

Let Rmin
g and Rmax

g be the minimum and maximum dose desired for dose points in organ g.
In general it is not possible to achieve dose within this range for every dose point because of
the physical limitations of the delivery hardware. Therefore, we do not hard constraints for
the doses. Instead, let ci be the overdose or underdose for pi. Assuming that ci is ultimately
minimized, then it can be represented using the following three inequalities:

ci ≥ 0,

ci ≥ Rmin
g − di,

ci ≥ di −Rmax
g ,

Note that, there is no maximum dose for the tumor, nor minimum dose for healthy organs.
Therefore, the constraints ci ≥ Rmin

g −di are omitted for tumor dose points and the constraints
ci ≥ di −Rmax

g are omitted for the healthy organ dose points. However, they are retained in
the formulation for completeness.

The primary clinical objective is to eradicate the tumor. That is, all of the tumor should
receive more than the prescription dose. However, a small percentage of the tumor volume
(1̃%) can receive less than the prescription dose if it will reduce high dose to large amounts
of healthy tissue. To achieve this effect, our model uses a linear penalty function with high
coefficient for tumor dose points, and a quadratic penalty with low coefficient for healthy
organs. This objective can be expressed as:∑

g∈Gtumor

∑
i∈Ig

Mci +
∑

g∈Ghealthy

∑
i∈Ig

Qc2i ,

and it is assumed that Q << M . Specifically, this objective function prioritizes the mini-
mizing of underdose to the tumor (since M is large), except when causing large overdosing
to healthy organs (since the quadratic penalty will eventually overwhelm the linear penalty).
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Some preliminary values for M and Q are used for our computational study, but finding a
suitable class solution, i.e. one that will in general give reasonable results, is beyond the
scope of this study.

Our dose planning model for GKP is presented in full below.

minimize
∑

g∈Gtumor

∑
i∈Ig

Mci +
∑

g∈Ghealthy

∑
i∈Ig

Qc2i

subject to:

di =
∑
j

∑
k

∑
`

Dijk`yjk` ∀i

0 ≤ yjk` ≤ Tmaxxjk` ∀j, k, `
tj − Tmax(1− xjk`) ≤ yjk` ≤ tj, ∀j, k, `

(GK)
∑
`

xjk` = 1, ∀j, k

ci ≥ Rmin
g − di, ∀i

ci ≥ di −Rmax
g , ∀i

and xjk` ∈ {0, 1}, ∀j, k, `,
tj, ci, yjk` ≥ 0 ∀i, j, k, `

Real patient, hardware, and dose rate data were not available for these initial experiment.
Therefore, mock data was used in its place. They are described in the following three sections.

6.3.2 Patient Data

The total volume of interest was the upper half of the head, which was modeled as a half
sphere extruded in the vertical direction. The diameter at the base was 7 cm and the height
was 10 cm. These dimensions are approximately the average head size.

There were three tumor shapes in consideration for these experiments: a U-shape, a Star,
and a Dumbbell. These a-spherical shapes make them complicated and difficult to manually
plan. The three tumor shapes are shown in Figure 6.1.

There were no other healthy organs created for this experiment, but usually organs such
as the ocular nerves are also contoured.

6.3.3 Helmet Model

The helmet inner surface was modeled as a 20 cm diameter sphere surface cut 2 and 17
cm above the sphere equator. The focal point was taken to be the center of the sphere.
The helmet major axis was assumed to point along the z-axis, from the head of the patient
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Figure 6.1: Mock tumor shapes used for this study. The tumor shapes were generated to
be more complicated than a typical ’spherical’ tumor. Only the tumor and the head volume
was considered in this study.

Figure 6.2: Approximation of helmet used in this study. Accurate measurements of the beam
locations may be acquired manually using the GKP unit at UCSF.
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towards the feet. The helmet was divided into eight equal sectors, the first sector starting
along the x-axis (away from the face). Each sector contained 24 beams grouped into 5 major
rows, each row going in the radial direction around the helmet. The number of beams in
each row, starting from the top, was 5,4,5,4,and 6. Each major row contained 4 minor rows,
one for each collimator size. The minor rows were equally spaced along the surface of the
sphere with the same space between each row and the terminal ends of the helmet. The
beams within each row were also equally spaced with the same space between each beam
and the sides of the sector. Figure 6.2 shows the approximated helmet and focal point along
with a snapshot taken from a GKP video.

6.3.4 Beam Model

The parameter Dijk`is the sum of the dose rate contributions from every beam of size ` in
sector k given shot center j. To compute this parameter, it is sufficient to have a beam model,
which computes the intensity of a beam at an arbitrary point P3, from a beam originating
at P1 pointed at P2 with radius R given the properties of the material between P1 and P2.
Such a beam model has been difficult to find in the literature and beam models for other
radiotherapy devices involve many parameters which have to be determined experimentally
on a unit-by-unit basis. For this study, an extremely approximate model was used. Our
model used only geometry (no material properties) and was created to have two basic beam
features: attenuation and scattering. Attenuation is the loss of intensity along the beam due
to photon absorption into the material medium. Scattering is the tendency of the photons
to deviate from the beam line due to photon collisions with the material medium.

Let r‖ be length of the projection of P3 − P1 onto P2 − P1, and let r⊥ be the length of
P3 − P1 minus the projection of P3 − P1 onto P2 − P1. A depiction of r‖ and r⊥ are shown
in Figure 6.3 (left).

The dose rate contribution, D, of a beam with radius, r, originating at P1, pointed at
P2, at an arbitrary point was

D = D0e
−µr‖

if r⊥ was less than r and

D = D0e
−µr‖e

−γ r⊥−r

r‖ ,

where D0 is some reference dose rate, µ is the attenuation coefficient, e−µr‖ is the attenuation

term, γ is the scattering coefficient, and e
−γ r⊥−r

r‖ is the scattering term. When P3 was inside
the radius of the beam, it was assumed that the beam only attenuated. The scattering term
says that scattering is exponential in the off-axis direction of the beam and more pronounced
far from the beam. A slice of the beam intensity is shown in Figure 6.3 (right). The model
makes intuitive sense, but is not based on any fundamental physics. The parameter, Dijk`,
was computed as the sum of the 24 beams in k with radius ` assuming shot center s.
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Figure 6.3: Depiction of r‖ and r⊥ (left). Profile of beam intensity using artificial model
(right). The beam intensity makes intuitive sense, but is not based on fundamental physics.
Diagram of terms used for beam model. The beam model computes the dose rate at an
arbitrary point P3, from a beam with radius r, originating at P1 and pointed at P2.

For this experiments µ = 0.0063 was used, the attenuation coefficient of water, and
γ = 6.3 was used. Although this model is extremely ad-hoc, the correct model, when found,
can easily be substituted into the code base written for this experiment.

6.3.5 Method Evaluation

A uniform grid of points was generated for each organ. For the tumor volume, dose points
were spaced, 2 mm in the x-, y-, and z-direction. For the head volume, dose points were
spaced 8 mm in the x and y direction, and 2 mm in the z direction.

For the U-shape and Star tumor, ten shot centers were chosen randomly from the dose
points in the target. For the Dumbbell shape, 15 shot centers were chosen randomly in the
same manner. More shot centers were chosen for the Dumbbell because its volume is more
spread out than the other shapes.

The prescription dose was set at 19 Gy, which was also Rmin for the tumor. Rmax for
the head volume was set at 9 Gy. These are common dose limits used in practice, but since
the beam model is not exact, only serve as numerical placeholders.

For this study, M = 100 was used for the linear coefficient and Q = 1 was used for the
quadratic coefficient. Thus the objective function would behave as follows. Since M >> Q,
delivering prescription dose to the tumor was prioritized over small overdosing of healthy
tissue. However, delivering the prescription dose to healthy tissue, presumably lethal, would
have equal weight to small underdosing of target tissue.
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U Star Dumbbell

Tumor dose points [#] 321 192 371
Head dose points [#] 7552 7563 7547
Solve time [sec] 110 85 7539

Table 6.2: This table gives the number of dose points in the tumor and the head for each of
the tumors explored in this study. Also given is the time required for CPLEX to compute
the optimal solution for that tumor.

Instances of GK were solved using Matlab R2011a on a Lenova ThinkPad with an Intel
i5-2410M processor and 4GB of RAM. The Matlab interface for CPLEX 12.1 was used for
the integer program optimization. All default parameters were used.

6.4 Results

A brief description of the numerical results is shown in Table 6.2. Each model instance was
solved to optimality. However, the solvetime for the Dumbbell tumor shape was much higher
than for the other shapes. It is still unknown how adding additional healthy structures will
affect solution time.

Figure 6.4 shows heat maps for the dose distributions found using our model. The rows
show dose heat maps for consecutive slices of the head in descending z-axis order. The first
row shows heat maps for the U-shaped tumor, the second row for the Star, and the third
row for the Dumbbell. Orange shows dose exceeding 125% of the prescription dose, green
for an excess of 100% of the prescription dose, cyan for an excess of 50% of the prescription
dose, and blue for less than 50% of the prescription dose. It is desired for the entire tumor
to be at least green, and outside the tumor to be blue.

Since this entire study is based on estimated data, these dose plans are not clinically
relevant. However, the dose distribution confirms that the optimization is working toward
the correct goal.
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Figure 6.4: Heat maps of dose distributions over several slices around the tumor volume. Al-
though this studied relied on artificial data, the dose distributions show that the optimization
model is headed in the right direction.

6.5 Discussion

This study presented initial results for an optimization model which can compute GKP dose
plans. However as a multi-objective model (i.e. dose objectives are aggregated into a single
objective using penalties) and even with correct beam and helmet data, such a model would
require manual fine tuning to achieve dose objectives. In particular, the user would have to
tweak M for the tumor and a Q value for each healthy structure until a satisfactory dose plan
was computed. Additionally, this model required that shot centers be selected by the user.
This is an undesirable property since the user may choose shot centers which may exclude
high quality dose plans from being found. Incorporating dose-volume constraints, such as
those used in IPIP, and shot center optimization into the model is left to future work.

6.6 Conclusion

We have developed an integer program for creating Gamma Knife Perfexion dose plans. Our
initial computational studies using mock data confirm that our optimization model can be
used to control the dose distribution. Future work should (1) utilize more realistic helmet
geometry, beam, patient, and dose objective data and (2) modify the model to include dose-
volume constraints and shot center optimization, as well as custom algorithms for finding
solutions to such models.
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Chapter 7

Conclusion

7.1 Contributions

This dissertation has taken a major step in reducing side effects of brachytherapy, which is
a major goal of the field. Specifically we have made the following contributions.

We developed Inverse Planning by Integer Program (IPIP), an integer programming
which allows physicians to directly optimize the standard metrics used to evaluate HDR
brachytherapy dose distributions. However, we showed that CPLEX could not solve this
model within 30 minutes, which is already long enough to interrupt the clinical workflow.

To address the tractability shortcomings of IPIP, we developed a heuristic algorithm,
IPIP-H, which uses two linear programs to compute feasible solutions for IPIP. Thus, it is a
polynomial-time heuristic algorithm for IPIP. We showed that IPIP-H could produce a dose
plan which met the RTOG-0321 dosimetric protocol in less than 30 seconds on a personal
computer. We compared our results to IPSA, a clinically deployed dose planning model,
which was not able to compute a dose plan meeting all objectives in a single iteration.

We formulated the problem of positioning HDR brachytherapy needles as a spatial cov-
erage problem and showed that this problem could be represented as a set cover integer
program.

We developed Needle Planning by Integer Program (NPIP), an algorithm which generates
patient specific needle configurations represented by skew-lines. We used NPIP to compute
needle configurations for 18 patients, and showed that these needle configurations met the
RTOG-0321 dose objectives and used fewer needles than the physician. Additionally, NPIP
always computed a needle configuration that avoided puncturing the penile bulb; the average
number of punctures made by the physician was 5. We also conducted a sensitivity analysis
of NPIP-generated needle configurations to placement errors on the order expected from
current needle insertion robots in a clinical environment. We showed that, although dose
objectives could be met with 10 or fewer needles, 16 needles were required to meet dose
objectives robustly.

We designed and implemented the first end-to-end robotic HDR brachytherapy experi-
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ment. We planned and executed NPIP-generated needle configurations in a fully equipped
brachytherapy environment on two anatomically-correct gelatin phantoms using Acubot-
RND. Although there were non-trivial placement errors, we were able to implant the needle
configurations with sufficient accuracy to meet dose objectives.

In summary we have developed planning tools for HDR brachytherapy needle and dose
planning and established their viability in a robotic workflow. We leave the translation of
these tools into clinical practice to future work, which is discussed in the following section.

7.2 Future Work

There are many exciting avenues of future work that warrant exploration. A few of them
are discussed here.

7.2.1 Dose Planning

Our initial computational results for IPIP-H warrant testing them in a clinical setting in real
time. Dose distributions could be computed from IPIP-H in parallel with the current dose
planning system and the physician could pick the preferred dose plan. Compliance with dose
objectives and total treatment planning time could be evaluated and compared.

Since IPIP-H allows the user to directly constraint dosimetric indices, alternative stan-
dards for constraining dosimetric indices could be explored that are more strict than the
RTOG-0321 protocol. For example, it may in general be possible to restrict the VProstate

100

≥ 90% and VRectum
75 ≤ 0.5 cm3. If so, then the protocol can be updated and the rectal dose

would be reduced for all HDR brachytherapy recipients. Also, additional constraints can
be added, and should be explored, such as low dose to the rectum, VRectum

25 . With a dose
planning tool which directly constrain dosimetric indices, we can explore the set of possible
dose distributions as they related to these metrics.

It is also worth exploring the use of IPIP-H to compute HDR brachytherapy dose plans
for other cancer sites where brachytherapy is used such as the breast, cervix, head, and neck.
Some of these regions like the head and neck have less developed dosimetric protocols, and
IPIP-H could be a useful tool for establish effective protocols for dose distributions in these
areas.

For IPIP, the underlying integer program, it would be useful to explore custom methods
of reducing the upper bound, perhaps with cutting plane methods that work alone or assist
in branch and bound.

There has been recent work in robust optimization, which augments linear programs with
new constraints such that the new optimal solution is high quality and resistent to minor
perturbations in the input parameters of the optimization model [12, 13]. In other words,
robust optimization seeks to find a high quality solution that remains feasible even if the
values contained in the A and b matrices are slightly perturbed, and such that the objective
function value does not degrade under perturbations of the c matrix. There has been similar
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work on robust optimization of integer programs as well [7]. It would be interesting to apply
these robust optimization techniques to IPIP to see if it can produce dose plans which are
resistant to change given needle movement, contouring uncertainty, or edema of the prostate.

At the UCSF brachytherapy, it is preferred that the volume receiving very high dose
(i.e. hot spots), be spread out in small “bubbles” rather than clumped up into a single,
large volume. Theoretically, small spread out hot spots allow healthy tissue to recover,
but is still lethal to cancerous tissue. However, the distribution of the volume receiving
high dose is not represented by dosimetric indices since they only quantify the total volume
receiving over a certain dose. Specifically, the VProstate

150 says nothing about how the volume
receiving over 150% the prescription dose, only what the volume is. It would be interesting
to represent this “second order” characteristic as integer programming constraints in some
way and incorporate the constraints into IPIP. Thus the “bubbliness” of dose distributions
could be improved.

7.2.2 Needle Planning

As mentioned in Chapter 4, it would be useful to improve the candidate needle set generation
component of NPIP. Specifically, we would like a method which can characterize all the
possible straight needles, i.e. a complete method, which originate at the entry zone, have
some length within the prostate, and no length within an OAR. This method will be useful
in two ways. First, the set of possible needles meeting the aforementioned criteria is infinite
(finite, but very large if you take into account discretization of movement), and therefore,
some down-sampling will be required. A complete method of characterizing the set of possible
needles will allow sampling in a way that can ensure useful, but rare, needles are kept in
the candidate needle set. In other words, the method would allow a sampling method which
would result in an even distribution of candidate needles around the prostate volume. Second,
this method would be able to tell the user that a specified coverage level is not achievable
given the geometric constraints of the entry zone and organ models, and which areas cannot
be covered.

From a practical point of view, this method would ensure that NPIP would never fail
to return a needle configuration when one existed. Thus, a patient would never be rejected
for treatment (i.e. due to pubic arch interference or similar disqualifying qualities) when a
viable needle configuration existed for them.

The candidate needle set generation component, needle selection component, and dose
planning component of NPIP are entirely modular (i.e. they can be replaced by other
components which perform the same function). There some replacements worth exploring.
For instance, it would be interesting to replace the current candidate needle set generation
component with one that produced a family of curved needles to choose from. The same
criteria for coverage would be used in the needle selection component, but it would be
interesting to see if less needles could provide the same coverage. As curved needles have
the potential to better avoid obstacles such as the penile bulb, needle configurations with
less needles that meet treatment objectives may be possible with a curved candidate needle
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set. Also, the current needle selection component relies on the solution of a difficult integer
program. It would be interesting to test a fast approach such as a greedy algorithm to see if
the needle configurations of a similar quality to the integer program could be achieved, but
with far less computational effort. Finally, it would be interesting to try replacing the dose
planning component with a dose planning module for PPI brachytherapy, to see if needle
and seed configurations can be generated which are superior to those computed from current
systems.

Just as with IPIP-H, it would be interesting to do a computational study trying NPIP
for other body sites where HDR brachytherapy is used.

7.2.3 Robot-Assisted Brachytherapy

A needle insertion robot, or robotic module, which is specialized for HDR brachytherapy
would be extremely useful in studying the potential of NPIP for improving the implantation
of needles. Such a device would require a method of dropping a needle in place without
substantially disrupting its position, or a mechanism for holding many needles in place
at once. The robot should also include a calibration device which registers the robot’s
frame to the anatomy. This calibration device would probably be scanned along with the
patient anatomy. With an effective method of dropping or holding multiple needles and a
calibration device, needle placement with substantially improved accuracy to our Acubot-
RND experiment is probably possible

Towards the improved automation of the brachytherapy workflow, it would also be in-
teresting to incorporate recent work in automatic segmentation of organs [50, 119] into the
robotic workflow, since contouring uncertainty is known to be a factor in the dose to organs
for various radiation therapies [37,106].

7.3 Closing Remarks

Optimization has penetrated into many academic and industrial fields and has had a positive
impact on the performance, efficiency, and cost of real-life systems. Radiation oncology is
no exception. However, I believe that Radiation Oncology is still a ripe field for many appli-
cations of optimization. I believe that through optimization, we can make cancer therapies
more effective at killing cancer, reduce side effects, reduce treatment costs, reduce skill de-
pendance on treatment (and thus make treatments more accessible), reduce treatment time
and patient discomfort, and even design new radiation therapy devices which improve the
way patients are treated. My work up to this point has scratched the surface of the potential
that I believe optimization has for improving all aspects of cancer therapy. It is my hope to
see optimization used towards this purpose in the near and long term future.
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radiosurgery of meningiomas in the cavernous sinus region. Acta neurochirurgica,
141(5):473–480, 1999.

[71] C. MacLeod, A. Fowler, C. Dalrymple, K. Atkinson, P. Elliott, and J. Carter. High-
dose-rate brachytherapy in the management of high-grade intraepithelial neoplasia of
the vagina. Gynecologic oncology, 65(1):74–77, 1997.

[72] T. Martin, D. Baltas, R. Kurek, S. Röddiger, M. Kontova, G. Anagnostopoulos,
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Appendix A

Dose Planning Appendix

A.1 Additional Numerical Results

This appendix gives additional numerical results for each patient over the four algorithms
included in the study. These were IPIP, IPIP-R, IPIP-H, and IPSA. For the sake of space,
abbreviated dosimetric indices were given. Here “P” stands for Prostate, “B” for Bladder,
“R” for Rectum, “U” for Urethra, ”b” for penile bulb, and “bo” for body tissue dose points.
For IPIP “Gap” is the difference between the upper bound and the lower bound when CPLEX
was terminated at 30 minutes. If the Gap is 0, it means IPIP was solved to optimality. For
IPIP-H, the Gap was the difference between the true coverage as measured by the VProstate

100

and relaxed coverage used in the objective function of IPIP-H. A gap was not included for
IPIP-R and IPSA because these algorithms are linear programs and therefore do not have a
Gap. The term “HI” refers to the homogeneity index. If HI is blank, then it means it could
not be computed for that particular case, e.g. VProstate

100 was 0. “Time” refers to the solve
time.
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Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 100 0 33 67 0.31 0.00 0.00 0.00 0.73 0.00 0.04 0.00 0.00 14
IPIP-R 100 n/a 32 68 0.42 0.00 0.00 0.00 0.95 0.00 0.32 0.00 0.00 6
IPIP-H 100 0 30 70 0.66 0.00 0.00 0.00 0.84 0.00 0.07 0.00 0.00 3
IPSA 98 n/a 25 74 0.20 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.14 3

Table A.1: IPIP Study Patient 1 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 100 0 34 66 0.84 0.00 0.00 0.00 0.31 0.00 0.10 0.00 0.00 1723
IPIP-R 100 n/a 50 50 1.69 0.00 0.00 0.00 0.77 0.00 0.36 0.00 0.00 9
IPIP-H 99 1 41 59 0.98 0.00 0.00 0.00 0.61 0.00 0.06 0.00 0.00 8
IPSA 98 n/a 28 71 0.32 0.00 0.00 0.00 0.28 0.00 0.07 0.00 0.38 2

Table A.2: IPIP Study Patient 2 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 88 10 25 71 0.54 0.00 0.00 0.00 0.35 0.00 0.08 0.00 0.00 1800
IPIP-R 96 n/a 44 54 1.76 0.00 0.00 0.00 1.25 0.00 0.29 0.00 0.00 12
IPIP-H 93 6 39 58 0.92 0.00 0.00 0.00 0.88 0.00 0.08 0.00 0.00 7
IPSA 96 n/a 31 68 1.62 0.00 0.00 0.00 0.74 0.02 0.20 0.04 0.43 4

Table A.3: IPIP Study Patient 3 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 94 4 29 69 0.56 0.00 0.00 0.00 0.49 0.00 0.07 0.00 0.00 1801
IPIP-R 95 n/a 44 54 0.67 0.00 0.00 0.00 1.30 0.00 0.46 0.00 0.00 22
IPIP-H 94 5 36 62 0.65 0.00 0.00 0.00 0.72 0.00 0.06 0.00 0.00 16
IPSA 98 n/a 32 67 1.19 0.36 0.00 0.00 0.00 0.00 0.10 0.01 0.05 3

Table A.4: IPIP Study Patient 4 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 96 3 38 61 0.29 0.00 0.00 0.00 0.61 0.00 0.02 0.00 0.00 1801
IPIP-R 97 n/a 49 49 1.36 0.00 0.00 0.00 0.77 0.00 0.42 0.00 0.00 14
IPIP-H 96 3 38 61 0.76 0.00 0.00 0.00 0.48 0.00 0.10 0.00 0.00 8
IPSA 97 n/a 34 65 0.10 0.00 0.00 0.00 0.77 0.05 0.13 0.00 0.24 3

Table A.5: IPIP Study Patient 5 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 99 0 31 69 0.74 0.00 0.00 0.00 0.49 0.00 0.06 0.00 0.00 1801
IPIP-R 100 n/a 51 48 1.27 0.00 0.00 0.00 2.00 0.00 0.35 0.00 0.00 28
IPIP-H 98 2 39 60 0.48 0.00 0.00 0.00 0.67 0.00 0.05 0.00 0.00 26
IPSA 98 n/a 26 74 0.34 0.00 0.00 0.00 0.70 0.00 0.01 0.00 0.14 9

Table A.6: IPIP Study Patient 6 Dosimetric Results
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Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 0 100 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1801
IPIP-R 99 n/a 49 51 3.04 0.00 0.00 0.00 2.40 0.00 0.37 0.00 0.00 39
IPIP-H 94 5 26 72 0.92 0.00 0.00 0.00 0.73 0.00 0.06 0.00 0.00 17
IPSA 97 n/a 23 76 2.00 0.02 0.00 0.00 0.65 0.00 0.00 0.00 0.10 8

Table A.7: IPIP Study Patient 7 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 0 100 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1800
IPIP-R 100 n/a 48 52 2.08 0.00 0.00 0.00 1.16 0.00 0.30 0.00 0.00 12
IPIP-H 99 1 36 64 0.97 0.00 0.00 0.00 0.48 0.00 0.06 0.00 0.00 12
IPSA 98 n/a 28 72 0.76 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.29 4

Table A.8: IPIP Study Patient 8 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 61 38 1 99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1836
IPIP-R 99 n/a 48 51 0.58 0.00 0.00 0.00 0.02 0.00 0.48 0.00 0.00 10
IPIP-H 98 2 43 57 0.36 0.00 0.00 0.00 0.01 0.00 0.10 0.00 0.00 8
IPSA 98 n/a 40 60 0.23 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.29 3

Table A.9: IPIP Study Patient 9 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 41 59 1 96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1801
IPIP-R 99 n/a 50 49 1.36 0.00 0.00 0.00 1.30 0.00 0.40 0.00 0.00 16
IPIP-H 97 3 41 58 0.56 0.00 0.00 0.00 0.80 0.00 0.08 0.00 0.00 11
IPSA 97 n/a 38 61 0.22 0.00 0.00 0.00 0.73 0.00 0.04 0.00 0.29 5

Table A.10: IPIP Study Patient 10 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 0 100 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1801
IPIP-R 100 n/a 43 57 2.84 0.00 0.00 0.00 2.44 0.00 0.28 0.00 0.00 34
IPIP-H 96 4 42 56 1.00 0.00 0.00 0.00 0.86 0.00 0.07 0.00 0.00 18
IPSA 98 n/a 30 70 1.75 0.00 0.00 0.00 0.42 0.00 0.17 0.00 0.19 16

Table A.11: IPIP Study Patient 11 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 99 1 27 73 0.80 0.00 0.00 0.00 0.91 0.00 0.01 0.00 0.00 1800
IPIP-R 100 n/a 41 59 0.89 0.00 0.00 0.00 2.32 0.00 0.36 0.00 0.00 10
IPIP-H 98 2 25 74 0.76 0.00 0.00 0.00 0.76 0.00 0.04 0.00 0.00 9
IPSA 97 n/a 26 73 0.32 0.00 0.00 0.00 0.95 0.01 0.07 0.00 0.05 3

Table A.12: IPIP Study Patient 12 Dosimetric Results
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Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 0 100 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1801
IPIP-R 99 n/a 42 57 3.11 0.00 0.00 0.00 2.28 0.00 0.41 0.00 0.00 34
IPIP-H 96 4 31 68 0.89 0.00 0.00 0.00 0.72 0.00 0.07 0.00 0.00 27
IPSA 98 n/a 23 77 2.40 0.01 0.00 0.00 0.58 0.00 0.04 0.00 1.58 24

Table A.13: IPIP Study Patient 13 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 0 100 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1801
IPIP-R 100 n/a 42 58 2.58 0.00 0.00 0.00 3.04 0.00 0.35 0.00 0.00 28
IPIP-H 97 3 30 69 0.91 0.00 0.00 0.00 0.82 0.00 0.08 0.00 0.00 17
IPSA 98 n/a 24 75 1.01 0.01 0.00 0.00 0.96 0.00 0.01 0.00 0.48 11

Table A.14: IPIP Study Patient 14 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 99 0 26 74 0.80 0.00 0.00 0.00 0.22 0.00 0.06 0.00 0.00 1801
IPIP-R 99 n/a 37 63 1.28 0.00 0.00 0.00 1.13 0.00 0.22 0.00 0.00 6
IPIP-H 99 1 30 70 0.88 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00 10
IPSA 99 n/a 29 70 1.19 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.10 3

Table A.15: IPIP Study Patient 15 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 55 45 1 98 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1801
IPIP-R 98 n/a 39 60 1.86 0.00 0.00 0.00 2.04 0.00 0.29 0.00 0.00 18
IPIP-H 94 5 27 72 0.96 0.00 0.00 0.00 0.53 0.00 0.05 0.00 0.00 11
IPSA 97 n/a 29 70 1.51 0.00 0.00 0.00 0.79 0.00 0.48 0.10 0.67 6

Table A.16: IPIP Study Patient 16 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 100 0 35 65 0.48 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 1800
IPIP-R 100 n/a 52 48 0.84 0.00 0.00 0.00 0.06 0.00 0.52 0.00 0.00 18
IPIP-H 99 1 39 60 0.65 0.00 0.00 0.00 0.29 0.00 0.06 0.00 0.00 14
IPSA 98 n/a 29 70 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 4

Table A.17: IPIP Study Patient 17 Dosimetric Results

Alg. VP
100 Gap VP

150 HI VB
75 VB

100 Vb
75 Vb

100 VR
75 VR

100 VU
125 VU

150 Vbo
200 Time

IPIP 0 100 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1800
IPIP-R 99 n/a 42 57 0.31 0.00 0.00 0.00 1.51 0.00 0.29 0.00 0.00 8
IPIP-H 98 2 40 59 0.28 0.00 0.00 0.00 0.89 0.00 0.10 0.00 0.00 9
IPSA 98 n/a 31 69 0.26 0.00 0.00 0.00 0.36 0.00 0.23 0.00 0.29 2

Table A.18: IPIP Study Patient 18 Dosimetric Results
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A.2 Additional DVH Results

Although this dissertation did not use DVH’s to compare dose distributions, they are a
common method of characterizing a dose distribution in practice. For that reason, we give
DVH for each patient and organ for the four algorithms considered in this study. Here IPIP
is in black, IPIP-R in blue, IPIP-H in green, and IPSA in red. Note that the IPSA DVH
is below the other algorithms’ for almost every patient and organ. This is because IPIP
generally produces hotter solutions than IPSA, since its objective is to maximize target
coverage.
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Figure A.1: IPIP DVH: Patient 1

Figure A.2: IPIP DVH: Patient 2
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Figure A.3: IPIP DVH: Patient 3

Figure A.4: IPIP DVH: Patient 4
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Figure A.5: IPIP DVH: Patient 5

Figure A.6: IPIP DVH: Patient 6
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Figure A.7: IPIP DVH: Patient 7

Figure A.8: IPIP DVH: Patient 8



APPENDIX A. DOSE PLANNING APPENDIX 109

Figure A.9: IPIP DVH: Patient 9

Figure A.10: IPIP DVH: Patient 10
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Figure A.11: IPIP DVH: Patient 11

Figure A.12: IPIP DVH: Patient 12
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Figure A.13: IPIP DVH: Patient 13

Figure A.14: IPIP DVH: Patient 14
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Figure A.15: IPIP DVH: Patient 15

Figure A.16: IPIP DVH: Patient 16
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Figure A.17: IPIP DVH: Patient 17

Figure A.18: IPIP DVH: Patient 18
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Appendix B

Needle Planning Appendix

B.1 Additional Robustness Results

This section contains the robustness figures for each patient from the sensitivity analysis in
our NPIP experiment. On the x-axis is δ. On the y-axis is the number of needles resulting
from that δ (bar graph) and the target coverage for the nominal needle configuration is shown
as red dots. The average target coverage over the 25 perturbations, as well as one standard
deviation error bars, are shown in blue. Note that infeasible instances of NPIP register as
0 needles and 0 target coverage for these plots. For clarity, a black horizontal line is given
at the 90% target coverage, the minimum cut off to meet our objectives. Note that because
dose distributions were computed with IPIP, all dose constraints for OAR were always met.
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Figure B.1: ROBUSTNESS PLOT: Patient 1

Figure B.2: ROBUSTNESS PLOT: Patient 2
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Figure B.3: ROBUSTNESS PLOT: Patient 3

Figure B.4: ROBUSTNESS PLOT: Patient 4
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Figure B.5: ROBUSTNESS PLOT: Patient 5

Figure B.6: ROBUSTNESS PLOT: Patient 6
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Figure B.7: ROBUSTNESS PLOT: Patient 7

Figure B.8: ROBUSTNESS PLOT: Patient 8
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Figure B.9: ROBUSTNESS PLOT: Patient 9

Figure B.10: ROBUSTNESS PLOT: Patient 10
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Figure B.11: ROBUSTNESS PLOT: Patient 11

Figure B.12: ROBUSTNESS PLOT: Patient 12
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Figure B.13: ROBUSTNESS PLOT: Patient 13

Figure B.14: ROBUSTNESS PLOT: Patient 14



APPENDIX B. NEEDLE PLANNING APPENDIX 122

Figure B.15: ROBUSTNESS PLOT: Patient 15

Figure B.16: ROBUSTNESS PLOT: Patient 16
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Figure B.17: ROBUSTNESS PLOT: Patient 17

Figure B.18: ROBUSTNESS PLOT: Patient 18
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